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ABSTRACT. It is shown that the C*-algebra M(A)/A, where A is a nonunital
separable simple AF C*-algebra and M(A) is the multiplier algebra of A, is
simple if and only if A has a continuous scale or A is elementary. Some results
concerning the ideal structure of M(A)/A are also obtained in the case that it
is nontrivial.

1. Introduction. Let K denote the C*-algebra of all compact operators on a
separable Hilbert space H, and B(H) the C*-algebra of all bounded operators on
H. Then B(H) is the multiplier algebra of K. (The multiplier algebra of a C*-
algebra is the idealiser of the C*-algebra in its double dual.) It is well known that
B(H)/K is simple. Let A be a separable simple AF C*-algebra with multiplier
algebra M(A). When is M(A)/A simple? Elliott showed [4] that if A4 is an infinite,
nonelementary separable matroid C*-algebra (which is a simple AF C*-algebra)
then M(A)/A has precisely one nonzero proper (closed, two sided) ideal. He also
showed that if A is a finite separable matroid C*-algebra, then M(A)/A is simple.
In this paper we shall consider a separable simple AF C*-algebra A. We shall show
that M(A)/A is simple if and only if either A has a continuous scale or A = K.
We shall also give some other results concerning the ideal structure of M(A)/A.

Recall that a separable C*-algebra A is AF if whenever ay,...,a, € A and
€ > 0 are given, there exist a finite dimensional C*-subalgebra B of A and elements
b1,...,bn € B such that |la; — b;]| < &, « = 1,2,...,n. Furthermore, if we are
initially also given a finite dimension C*-subalgebra By, we may choose B D By.

Let A be a nonelementary separable simple AF C*-algebra and G the corre-
sponding simple dimension group with scale I'(G). Fix an element u € G*\{0}.
Let S = S,(G) denote the set of all homomorphisms 7: G — R such that 7(G*) >0
and 7(u) = 1. Then S is a convex compact subset of the locally convex space R®
of all functions f: G — R with the product topology. Each 7 € S can be viewed as
a trace on A such that for each projection p € A, 7(p) < co. We shall denote the
extreme points of S by E(S). Let Aff(S) denote the set of all affine, real continuous
functions on S. We have a positive homomorphism §: G — Aff(S), a — a, where
a(r) = r(a). By [3, Corollary 4.2], § determines the order on G in the sense that
Gt ={a € G:a>0}uU{0}. Hence G* Nkerd = {0}. Moreover, S = S,(G) is
a Choquet simplex and H = 6(G) is a dense additive subgroup of Aff(S). For the
details of simple dimension groups readers are referred to [3, Chapter 4].
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For every 7 € S (as a trace), we can extend 7 to a trace on M(A),. In particular,
7(1) = sup{r(es): n = 1,2,...}, where {e,} is an approximate identity for A
consisting of projections, and 1 is the unit of M(A). As in [5, Theorem 2], one can
easily show that I'(G) = {a € G*: a(r) < (1) for all 7 € S}, provided that A is
nonunital.

We say that A has a continuous scale if i(7) is bounded and continuous on S,
and a bounded scale if 1(7) is bounded on S; we say that A is finite if 1() < oo
for all 7 € S. We say that A is infinite if A is not finite, and that A is stable if
i(r) = oo for all 7 € S, which is equivalent to saying that A = A ® K (see (2,
Theorem 4.9]).

2. Simplicity of M(A)/A.

LEMMA 1. Let A be a nonelementary separable infinite ssmple AF C*-algebra.
Let F = {7 € S: 1(r) = 00} and let J, be the closure of the set {a € M(A): (a*a)
< oo} where 7 i3 a fized element in F. Then J, is an ideal of M(A) such that
AGJ. G M(A).

PROOF. Let JO = {a € M(A): r(a*a) < oo}. Then J? is a *-invariant linear

subspace of M(A). Let a € JO,b € M(A). Then
|7(a*b*ba)| < ||b]|27(a*a) < oo.

Hence ba € J?; similarly ab € JO. Thus J;, is a closed ideal of M(A). Since for
every projection p € A, 7(p) < oo for all € S, and A is AF, we conclude that
A C J;. Let {e,} be an approximate identity of A consisting of projections, and set
fn =en—en—1 (€0 = 0). Since §(G) is dense in Aff(S), there are projections ¢, € A
such that 0 < 6gn] < 27"(1/10[fn]ll)6[fn], if 1] fn]ll > 1, or 0 < f[gn] < 27"6[fn],
i 0(f,)ll < 1, where [6[fu]ll = sup{r(fu): 7 € S}. We may assume that go < /n.
Since gn # 0 and gn, < fn, we have that ¢ = >, ¢, is a projection in M(A) but
not in A. Moreover 7(q) = Y77, 7(gn) <1< 00. So g€ J? C J,. Hence J, 2 A.

Now we show that 1 ¢ J,. Otherwise there is a € (J?)+ such that |1 — a| <
3~ Thus sp(a) C (4,%). This implies that 0 < 1 < %a. Then 7(1) < oo, a
contradiction.

Blackadar showed in [2, Theorem 4.8] that A has a bounded scale if, and only if,
A is algebraically simple. If A has a bounded scale, then must M(A)/A be simple?
We will see after the following lemma.

LEMMA 2. Let A be a nonunital, nonelementary simple AF C*-algebra. Let I
be the closure of
Ioo = {a € M(A): there is {an} C A such that 7((a — an)*(a — ay,))
converges to zero uniformly on S}. Then
(1) Ip is a (closed) ideal of M(A), AG Io C M(A), and Iy is the smallest such
tdeal.

(2) If A is algebraically simple, then Iog is already closed.
(3) If A has no continuous scale, Iy G M(A).

PROOF. Clearly Iy is a *-invariant linear subspace of M(A) containing A.
Suppose that a € M(A), b € M(A), and a,, € A are such that 7((a—a,)*(a—a,)) —
0 uniformly on S. We have

7((ba — an))* (b(a — ax))] < [Ib]I*7((a — an)*(a ~ an)) — 0
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uniformly on S. Since ba, € A, by the definition of Iyg, ba € Iyg. Similarly
ab € Ipp. Hence Ipp is an ideal of M(A). So Iy is a closed ideal of M(A). The
projection g constructed in the first part of the proof of Lemma 1 is continuous on
S. Moreover, we see that 7(}_}_, qx) converges uniformly to 7(g) on S. Hence

(5] (5o oo B) -

uniformly on S. Thus g € Io\A and Ip 2 A.

Let g be a projection in Ip, and let us show that g € Iyg. Since Iyg is dense in
Iy, we have that glyog contains a positive element close to g, and hence contains g.

Suppose that I is another ideal such that I 2 A. Let {ex} be an approximate
identity of A consisting of projections, and set f, = e, —en—1 (€0 = 0). As in the
proof of [4, Theorem 3.1], there is a projection p € I\ A such that exp = pex. To
show Iy C 1, it is enough to show that every projection g € Iy satisfying exg = gex
is in I, as in the proof of [4, Theorem 3.2]. Let g be such a projection. Then
g =Y gfn. Also, g € Ino, and so 7(g) is finite and continuous on S; therefore
> k=1 7(9fk) converges to 7(g) uniformly on S, by Dini’s theorem. We may assume
that pfi # 0; then inf{r(pf1): r € S} > 0. Since }_,> , 7(gfn) converges uniformly
on S, we can choose an integer ng such that

Z 7(gfk) <7(pfy) forallT€S.

k>ng
Then since infinitely many pf, are nonzero, there exists a partition of the set
{no + 1,n9 + 2,...} into finite subsets Ny, Na,... (of consecutive integers) such

that for each n =1,2,..., either N, = J or

Z 7(9fk) < t(pfn) forallT€S.
KEN,

Thus [} ,cn, 9fk] < [pfn]. There exists for each n = 1,2,...,u, € A such that
UnUp = ) pen, 9fk and upun < pfn. Set u = Y >°  u,. Then u € M(A),
uu* = g — gen,, and up = u. Hence u,u*, and g are in I. So I C I.

Now suppose that A is algebraically simple, and let a € M(A), b, € Iyo be such
that ||b, —a| — 0.

We may assume that |a — b,| < 1. Then

I7((a = b4)*(a — bs))| < [la = bulIT(la — bn).

Since A has a bounded scale, 7(la — b,|) < 7(1) < N, for all 7 € S and some
N > 0. Hence 7((a — b,)*(a — bp)) — 0 uniformly on S. Let a, € A be such that
7((bn — an)*(bp, — an)) < 1/n uniformly on S. We have .
7((a—an)*(@a—an))? < 7((a—bn)*(a—bn))"/? +7((bn — an)*(bn — an))"/* = 0
uniformly on S. We conclude that Iy is closed.

Finally suppose that A has no continuous scale. Then 1 ¢ Iy, i.e. Io G M(A).

THEOREM 1. Let A be a separable simple AF C*-algebra. Then M(A)/A 1s
simple if, and only if, either A has a continuous scale or A is elementary.

PROOF. Suppose that A is not elementary and has no continuous scale. By
Lemma 2, Iy is a closed ideal of M(A) such that A G Iy G M(A). In other words,
M(A)/A is not simple.
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If A is elementary, it is well known that M(A)/A is simple. We may now assume
that A has a continuou scale, i.e. that 7(1) is finite and continuous on S. By Dini’s
theorem, 7(e,,) converges to 7(1) uniformly on S. By the definition of Iy, 1 € Iy.
Hence Iy = M(A). By Lemma 2, I is the smallest ideal containing A. We conclude
that M(A)/A is simple.

REMARKS. Theorem 1 implies Theorem 3.1 of [4].

Given a simple dimension group G we can construct a separable, nonunital,
simple AF C*-algebra A with a continuous scale such that the dimension group
of A is G. So for every separable, nonunital simple AF C*-algebra A, there is
a separable, nonunital simple AF C*-algebra B such that A® K = B® K and
M(B)/B is simple.

3. Ideals of M(A)/A. Let A be a nonunital, separable, simple AF C*-algebra,
and let G and S = S, (G) be as before. Set F = {r € S: 7(1) = 0o} and let a be a
subset of F'N E(S). Let I, denote the closure of the set {a € M(A): r(a*a) < c©
for all 7 € a}. Then, as is easily seen, I, is an ideal of M(A) containing A. The
following theorem is a generalization of Theorem 3.2 of [4].

THEOREM 2. Let A be a nonunital, nonelementary, separable simple AF C*-
algebra. Suppose that E(S) has only finitely many points and FNE(S) has n points.
Then M(A)/A has ezactly 2™ — 1 different proper closed ideals, each of which has
the form I, /A.

PROOF. Suppose that n = 0. Since E(S) has finitely many points, A has a
continuous scale. In this case, Theorem 2 follows from Theorem 1.

We now suppose that FNE(S) = {r1,...,7}, n > 1. As in the proof of Lemma
1, each I, is a proper closed ideal of M(A) containing A properly. Let us show that
if @, B are nonempty subsets of FNE(S) with a # 3, then I, # I3. We may assume
that ¢ = {r1,...,7%} where k < n, and that 7,4, € . For each n =1,2,..., let
h, € Aff(S) be such that

O0[fn)(Tkt1) > hn(Tr41) > 50(fn](Th41),

and
0 < hp(r) < min(27",0[fn](7)), 1=1,2,...,k.

(Since E(S) is finite, the existence of h,, is clear.) Since §(G) is dense in Aff(S),
we may assume that h, € 8(G). So we have projections p, € A such that p, < fy
and Ti(Pn) < 2—11., 1= 1’2a .. ‘aka Tk+1(Pn) > %Tk-f-l(fn)- Then with p= Epna we
have p € M(A) and p € I, but p ¢ I; this is proved in the same way as 1 ¢ J; in
Lemma 1. Thus I, # I3.

Suppose that I is a closed ideal of M(A). We shall show that I is equal to the
smallest I, which contains it (o could be the empty set).

Let I, be such an ideal. Write F N (E(S)\a) = {r1,72,...,7s}, and set a; =
a U {r;}. Since I ¢ I,,, there are projections g; € I\I,, such that fig; = g fi for
1=1,2,...,sand k =1,2,... (see the proof of [4, Theorem 3.2]). Thus 7;(g;) = 00

Changing g; f into equivalent projections, we may assume that they belong to
a common finite dimensional C*-subalgebra of figAfx, say Bx. Then the range
projection hy of (3°7_; g:)fx exists in Bi. Since By is a finite dimensional C*-
algebra, {(3°;_, ¢:)f}*/™ — hi in norm. Hence (}°;_, ¢;)fk has an inverse bx in
the C*-subalgebra hyBihi. Set h =Y ;2 hi and b= ) 2, br. Both k and b are
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in M(A). Since h = b(}_;_, gi), h € I. Clearly 7(h) > 7(g:), 1 = 1,2,...,5. So
mi(h) =00 fori=1,2,...,s.

As in the proof of [4, Theorem 3.27], to show that I D I,, it is enough to show
that every projection ¢ € I, such that frq = qfx is in I. Suppose that ¢ is such
a projection. There exists a partition of {1,2,...} into finite sets Ny, Na,... (of
consecutive integers) such that for each m = 1,2,...,

7i(qfm) < Z 7i(hk), 1=1,2,...,s.

kENpm

Let S, denote the set of 7 in E(S) such that
7(afm) > D 7(hi).

k€ENm

Then B, C o U[E(S)\F]. Since 8(G) is dense in Aff(S), for each m, there is a
projection ¢, < qfm, such that

0<7(qfm—am) < D 7(hk)
kKENm
for 7 € B, and
0 < 7(gm) <1/2™ for 7 € E(S)\Bm.-

Thus go = Y pe_; gm is in Io, the closure of {a € M(A): 7(a*a) < oo for all
T € E(S)}. Set ¢’ = ¢ — qo; then

7(¢'fm) < Y (ki)

kENp

for all 7 € E(S), hence for all 7 € S. Therefore there exists for each m = 1,2,...,
Um € A such that vmv;, = ¢'fm and vy, vm < 3 cn . Set v = Yo, Um; then
v € M(A), and ¢' fmv = v e, he = vm. In particular v is a partial isometry,
and vv* = ¢’ = ¢ — go and vh = v. Then v, v*, and therefore g — qo are in I. Since
E(S) is finite, by Lemma 2, Ij is the smallest ideal in M (A) properly containing
A. So I 2 Iy, whence gog € I and ¢q € I. This completes the proof.

THEOREM 3. Let A be a nonelementary separable infinite simple AF C*-
algebra. Suppose that F N E(S) is an infinite set. Then M(A)/A has infinitely
many different (closed) ideals.

PROOF. Let {;} be a sequence in F N E(S). Let Fy ={r:1=1,2,...,k+1}
and let Ji be the closure of {a € M(A): 1;(a*a) < 00,7 =1,2,...,k + 1}. Define

hn(7:) = min{27""1 0(f.](1)}, 1=1,2,....,k,

and
ha(Tkt1) = 50[f2)(Te41)-

Define h,(1) = hu(1) = hn(7) for 7 € Fx, h,(t) = inf{hn(7): T € Fi}, hn(t) =
sup{hn(r): 7 € Fi}, for t € S\Fk. It is easily verified that h, is upper semi-
continuous and convex while h,, is lower semicontinuous and concave. By [1,

Theorem I1.3.10] there exists a real affine continuous function g}, on S such that
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0 < h, < g, <h,. Hence g,|Fx = hy. Since §(G) is dense in Aff(S), for each n
there is g, € 6(G) such that

lgn(t) — 2gn(t)| < Finf{hn(r): 7 € Fi}

for all t € S. Consequently, we have projections p, € A such that p, < fn,
Ti(pn) < 27", i =1,2,...,k and 7x41(Pn) = §7k+1(fn). Set p =307 pn. Then
p € M(A). 1t is easily verified that p € Jx but p ¢ Jx+1 (just as 1 ¢ J; in Lemma
1). Thus Ji 2 Jk+1. This completes the proof.

REMARK. Let A be a nonunital, nonelementary, separable simple AF C*-algebra
without continuous scale, such that E(S) is infinite. If furthermore, E(S) is closed
or, equivalently, S is a Bauer simplex, then every real continuous function on E(S)
can be extended to a function in Aff(S). Therefore an argument similar to that
used in this paper shows that M (A)/A has infinitely many closed ideals. We believe
that M(A)/A has infinitely many closed ideals even if E(S) is not closed. However,
if S is a general Choquet simplex, a continuous function on E(S) may not extend
to a continuous affine function on S, and this creates a technical problem. Other
methods may be needed.
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