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ABSTRACT. It is shown that the C*-algebra M(A)/A, where A is a nonunital

separable simple AF C*-algebra and M(A) is the multiplier algebra of A, is

simple if and only if A has a continuous scale or A is elementary. Some results

concerning the ideal structure of M(A)/A are also obtained in the case that it

is nontrivial.

1. Introduction. Let K denote the C*-algebra of all compact operators on a

separable Hubert space H, and B(H) the C*-algebra of all bounded operators on

H. Then B(H) is the multiplier algebra of K. (The multiplier algebra of a C*-

algebra is the idéaliser of the C*-algebra in its double dual.) It is well known that

B(H)/K is simple. Let A be a separable simple AF C*-algebra with multiplier

algebra M (A). When is M (A)/A simple? Elliott showed [4] that if A is an infinite,

nonelementary separable matroid C*-algebra (which is a simple AF C*-algebra)

then M(A)/A has precisely one nonzero proper (closed, two sided) ideal. He also

showed that if A is a finite separable matroid C*-algebra, then M (A)/A is simple.

In this paper we shall consider a separable simple AF C* -algebra A. We shall show

that M (A)/A is simple if and only if either A has a continuous scale or A = K.

We shall also give some other results concerning the ideal structure of M (A)/A.

Recall that a separable C*-algebra A is AF if whenever ai,...,a„ G A and

e > 0 are given, there exist a finite dimensional C*-subalgebra B of A and elements

¿>i,...,6n G B such that ||a¿ — ¿»¿II < £, i = 1,2, ...,rt. Furthermore, if we are

initially also given a finite dimension C*-subalgebra B0, we may choose B D Bo.

Let A be a nonelementary separable simple AF C* -algebra and G the corre-

sponding simple dimension group with scale T(G). Fix an element u G c7+\{0}.

Let S = SU(G) denote the set of all homomorphisms r : G-»R such that t(G+) > 0

and t(u) = 1. Then S is a convex compact subset of the locally convex space RG

of all functions /:G-tR with the product topology. Each r G S can be viewed as

a trace on A such that for each projection p G A, r(p) < oo. We shall denote the

extreme points of 5 by E(S). Let Äff (S) denote the set of all affine, real continuous

functions on S. We have a positive homomorphism 9: G —► Aff(S), a —► â, where

ô(r) = t{o). By [3, Corollary 4.2], 9 determines the order on G in the sense that

G+ = {a G G: â » 0} U {0}. Hence G+ D ker0 = {0}. Moreover, S = SU(G) is

a Choquet simplex and H = 9(G) is a dense additive subgroup of Äff (5). For the

details of simple dimension groups readers are referred to [3, Chapter 4].
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For every r G S (as a trace), we can extend r to a trace on M(A)+. In particular,

r(l) = sup{r(e„): n = 1,2,...}, where {e„} is an approximate identity for A

consisting of projections, and 1 is the unit of M(A). As in [5, Theorem 2], one can

easily show that T(G) = {a G G+ : â(r) < r(l) for all r G S}, provided that A is

nonunital.

We say that A has a continuous scale if î(r) is bounded and continuous on S,

and a bounded scale if î(r) is bounded on S; we say that A is finite if î(r) < oo

for all r G S. We say that A is infinite if A is not finite, and that A is stable if

l(r) — oo for all r G 5, which is equivalent to saying that A = A ® K (see [2,

Theorem 4.9]).

2. Simplicity of M(4)/A

LEMMA 1. Let A be a nonelementary separable infinite simple AF C* -algebra.

Let F = {t G 5: l(r) — oo} and let JT be the closure of the set {a G M(A) : r(a*a)

< oo} where t is a fixed element in F. Then JT is an ideal of M(A) such that

A$Jr%M(A).

PROOF. Let J° = {a G M (A): r(a*a) < oo}. Then J° is a '-invariant linear

subspace of M (A). Let a G J°, b G M (A). Then

\r(a*b*ba)\ < \\b\\2T{a*a) < oo.

Hence ba G J°; similarly ab G J°. Thus JT is a closed ideal of M (A). Since for

every projection p G A, r(p) < oo for all r G S, and /I is AF, we conclude that

A Ç JT. Let {e„} be an approximate identity of A consisting of projections, and set

fn = en—en-i (eo = 0). Since 9(G) is dense in Aff(S), there are projections qn G A

such that 0 < 9{qn] < 2-"(l/||0[/„]||)0[/„], if ||0[/B]|| > 1, or 0 < 9[qn] < 2""0[/n],
if ||0[/„]|| < 1, where ||0[/„]|| = sup{r(/„): r G S}. We may assume that qn < fn.

Since qn ^ 0 and qn < /„, we have that q = X)^°=i Qn is a projection in M (A) but

not in A. Moreover r(q) = X^Li T{ln) < 1 < oo. So q G J° Ç JT. Hence JT ^ A

Now we show that 1 £ JT. Otherwise there is a G (J°)+ such that ||1 - a|| <

\. Thus sp(a) C (|,|). This implies that 0 < 1 < |a. Then r(l) < oo, a

contradiction.

Blackadar showed in [2, Theorem 4.8] that A has a bounded scale if, and only if,

A is algebraically simple. If A has a bounded scale, then must M(A)/A be simple?

We will see after the following lemma. •

LEMMA 2. Let A be a nonunital, nonelementary simple AF C* -algebra. Let Iq

be the closure of

ho = {a€ M (A) :   there is {an} C A such that r((a — an)*(a — an))

converges to zero uniformly on S}.  Then

(1) Iq is a (closed) ideal of M (A), A § Iq Ç M (A), and I0 is the smallest such

ideal.

(2) If A is algebraically simple, then /oo îS already closed.

(3) If A has no continuous scale, Iq ^ M(A).

PROOF. Clearly /oo is a "-invariant linear subspace of M (A) containing A.

Suppose that a G M (A), b G M (A), and an G A are such that r((a—an)* (a—an)) —►

0 uniformly on S. We have

r[(b(a - an))*(b(a - an))} < \\b\\2T((a - an)'(a - an)) - 0
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uniformly on S. Since ban G A, by the definition of /oo, ba G /oo- Similarly

ab G /oo- Hence /0o is an ideal of M (A). So /o is a closed ideal of M (A). The

projection q constructed in the first part of the proof of Lemma 1 is continuous on

S. Moreover, we see that r(2£=1 qk) converges uniformly to r(q) on 5. Hence

r((,_£*) (,"S,))"T(,"£*)r'
uniformly on 5. Thus q G ZoV4 and /o ^ A

Let g be a projection in /o, and let us show that g G /oo- Since /oo is dense in

/o, we have that gloog contains a positive element close to g, and hence contains g.

Suppose that / is another ideal such that / ^ A. Let {ek} be an approximate

identity of A consisting of projections, and set /„ = e„ — en_i (eo = 0). As in the

proof of [4, Theorem 3.1], there is a projection p G I\A such that ekp = pek. To

show /o Ç /, it is enough to show that every projection g G /o satisfying ekg = gek

is in /, as in the proof of [4, Theorem 3.2]. Let g be such a projection. Then

g = J2dfn- Also, g G /oo, and so r(g) is finite and continuous on S; therefore

IZít=i TÍ9fk) converges to r(g) uniformly on S, by Dini's theorem. We may assume

that p/i ^ 0; then inf{r(p/i) : r G S} > 0. Since X)^Li T(çfn) converges uniformly

on S, we can choose an integer no such that

J2 T^fk) < t(p/i)    for all r G S.
k>no

Then since infinitely many pfn are nonzero, there exists a partition of the set

{no + 1, no + 2,... } into finite subsets Ni,N%,... (of consecutive integers) such

that for each n = 1,2,..., either Nn = 0 or

Yl T(9fk) < r(pfn)    for all r G S.
keNn

Thus Efcejv 9 Ik] < [pfn]- There exists for each n = 1,2, ...,un G A such that

unK = J2keNn9fk and u*nun < pfn. Set u = £^°=1u„. Then u G M (A),

utt* = g — geno, and up = u. Hence u, u*, and <? are in /. So /o Ç /.

Now suppose that A is algebraically simple, and let a G M (A), bn G /oo be such

that ||6„ - a|| -* 0.

We may assume that \a — bn\ < 1. Then

|r((o - bn)*(a - bn))\ < \\a - bn\\r(\a - bn\).

Since A has a bounded scale, r(|a — b„\) < r(l) < N, for all r G S and some

N > 0. Hence r((a — bn)*(a — bn)) —* 0 uniformly on S. Let an G A be such that

r((bn — an)*(bn — an)) < 1/n uniformly on S. We have

r((a - any(a - an))1'2 < r((a - bn)*(a - bn)f'2 + r((bn - an)*(bn - an))1'2 -* 0

uniformly on S. We conclude that /oo is closed.

Finally suppose that A has no continuous scale. Then 1 ^ Iq, i.e. Iq ^ M(A).

THEOREM 1. Let A be a separable simple AF C* -algebra. Then M (A)/A is

simple if, and only if, either A has a continuous scale or A is elementary.

PROOF. Suppose that A is not elementary and has no continuous scale. By

Lemma 2, /0 is a closed ideal of M (A) such that A ^ /0 § M (A). In other words,

M(A)/A is not simple.
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If A is elementary, it is well known that M(A)/A is simple. We may now assume

that A has a continuou scale, i.e. that r(l) is finite and continuous on S. By Dini's

theorem, r(en) converges to r(l) uniformly on S. By the definition of /q, 1 G /o-

Hence I0 = M (A). By Lemma 2, /o is the smallest ideal containing A We conclude

that M(A)/A is simple.

REMARKS. Theorem 1 implies Theorem 3.1 of [4].

Given a simple dimension group G we can construct a separable, nonunital,

simple AF C* -algebra A with a continuous scale such that the dimension group

of A is G. So for every separable, nonunital simple AF C*-algebra A, there is

a separable, nonunital simple AF C*-algebra B such that A <g> K = B <g> K and

M(B)/B is simple.

3. Ideals of M (A)/A. Let A be a nonunital, separable, simple AF C*-algebra,

and let G and S = SU(G) be as before. Set F = {r G S: r(í) = oo} and let a be a

subset of F n E(S). Let Ia denote the closure of the set {a G M(A) : r(a*a) < oo

for all t G a}. Then, as is easily seen, Ia is an ideal of M (A) containing A The

following theorem is a generalization of Theorem 3.2 of [4].

THEOREM 2. Let A be a nonunital, nonelementary, separable simple AF C*"-

algebra. Suppose that E(S) has only finitely many points and Fi)E(S) has n points.

Then M(A)/A has exactly 2" — 1 different proper closed ideals, each of which has

the form Ia/A.

PROOF. Suppose that n = 0. Since E(S) has finitely many points, A has a

continuous scale. In this case, Theorem 2 follows from Theorem 1.

We now suppose that F n E(S) = {t\, ..., rn}, n > 1. As in the proof of Lemma

1, each Ia is a proper closed ideal of M (A) containing A properly. Let us show that

if a, ß are nonempty subsets of FnF(S) with a ^ ß, then Ia ^ Iß. We may assume

that a = {ri,...,rk) where k < n, and that Tk+i G ß. For each n = 1,2,..., let

hn G Aff (S) be such that

0[fn]{Tk+l) > hn(rk+1) > |ö[/„](Tfc+i),

and

0 < hn(Ti) < mm(2-n,9[fn}(Ti)),        » = 1,2,...,*.

(Since E(S) is finite, the existence of hn is clear.) Since 9(G) is dense in Aff(S),

we may assume that hn G 9(G). So we have projections pn G A such that pn < fn

and Ti(pn) < 2~n, i = 1,2,..., fc, Tk+i(pn) > §rfc+i(/B). Then with p = ¿p„, we

have p G M (A) and p G Ia but p^Iß\ this is proved in the same way as 1 ^ JT in

Lemma 1. Thus Ia ^ Iß.

Suppose that / is a closed ideal of M (A). We shall show that / is equal to the

smallest Ia which contains it (a could be the empty set).

Let Ia be such an ideal. Write Fn (E(S)\a) = {ri,r2,... ,rs}, and set a¿ =

a U {tí}. Since / <£ Iai, there are projections o¿ G /\/a, such that fkgt = gtfk for

i = 1,2,... ,8 and fc = 1,2,... (see the proof of [4, Theorem 3.2]). Thus rt(gt) = oo.

Changing g{fk into equivalent projections, we may assume that they belong to

a common finite dimensional C*-subalgebra of fkAfk, say Bk. Then the range

projection hk of (^*=1 9i)fk exists in Bk. Since Bk is a finite dimensional C*-

algebra, {(X^=i gi)fk}1/n —> hk in norm. Hence (J2i=i 9i)fk has an inverse bk in

the C*-subalgebra hkBkhk. Set h = YlkLi hk and b = J^kLi &fc- Both h and b are
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in M (A). Since h = 6(£-=1 ff¿), hei. Clearly r(h) > r(ft), i = 1,2,...,s. So
Ti(h) = oo for i = 1,2,..., s.

As in the proof of [4, Theorem 3.27], to show that / D Ia, it is enough to show

that every projection q G Ia such that fkq = qfk is in I- Suppose that q is such

a projection. There exists a partition of {1,2,... } into finite sets Ni,N%,... (of

consecutive integers) such that for each m = 1,2,...,

Ti(qfm) <   ^2 Ti(hk),        i = l,2,...,s.
k€Nm

Let ßm denote the set of r in E(S) such that

r(qfm) >   Yl r(/lfe)-
k€Nm

Then ßm C a U [F(S)\F]. Since 9(G) is dense in Aff(S), for each m, there is a

projection qm < qfm such that

0 < r(qfm - qm) <   ^ r(hk)

k€Nm

for t e ßm and

0 < r(qm) < l/2m    for r G E(S)\ßm.

Thus go = J2m=i Qm is in /o, the closure of {a G M(A): r(a*a) < oo for all

t G E(S)}. Set q' = q- g0; then

fcGNm

for all r G E(S), hence for all r G S. Therefore there exists for each m = 1,2,...,

vm e A such that vmv*m = q'fm and v*mvm <J2keNmhk- Set v = J2m=i vm\ then

v e M(A), and q'fmv — v^2k€N hk — vm. In particular v is a partial isometry,

and vv* = q' = q — q0 and v h = v. Then v, v*, and therefore q — go are in /. Since

E(S) is finite, by Lemma 2, /o is the smallest ideal in M(A) properly containing

A So / D Ir,, whence go G / and g G /. This completes the proof.

THEOREM 3. Let A be a nonelementary separable infinite simple AF C*-

algebra. Suppose that F n E(S) is an infinite set. Then M(A)/A has infinitely

many different (closed) ideals.

PROOF. Let {r¿} be a sequence in F n E(S). Let F* = {r¿ : i = 1,2,..., * + 1}

and let Jk be the closure of {a G M(A) : Ti(a*a) < oo, i — 1,2,..., fc + 1}. Define

hn(n) = mm{2-n~\9[fn](T)},        i = 1,2,..., fc,

and

MT*+i) = eö[/"Krfc+i)-

Define £n(r) = fcn(r) = 7in(r) for r G Ffc, ftn(<) = inf{*„(r): r G Ffc}, hn(t) =

sup{/i„(r): r G Ft}, for í G S\Ffc. It is easily verified that hn is upper semi-

continuous and convex while hn is lower semicontinuous and concave. By [1,

Theorem II.3.10] there exists a real affine continuous function g'n on S such that
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O < hn < g'n < hn. Henee g'n\Fk = hn. Since 9(G) is dense in Aff(S'), for each n

there is gn G 9(G) such that

\gn(t)-yn(t)\<\mi{hn(T):TeFk}

for all t e S. Consequently, we have projections pn G A such that pn < /„,

n(pn) < 2~n, i = 1,2,...,* and rk+1(pn) > |rfc+1(/n). Set p = £„°=1p„. Then

p G M (A). It is easily verified that p G Jk but p ^ Jfc+i (just as 1 ^ JT in Lemma

1). Thus Jfc ̂  Jk+i- This completes the proof.

REMARK. Let A be a nonunital, nonelementary, separable simple AF C*-algebra

without continuous scale, such that E(S) is infinite. If furthermore, E(S) is closed

or, equivalently, S is a Bauer simplex, then every real continuous function on E(S)

can be extended to a function in Aff(S). Therefore an argument similar to that

used in this paper shows that M(A)/A has infinitely many closed ideals. We believe

that M(A)/A has infinitely many closed ideals even if E(S) is not closed. However,

if 5 is a general Choquet simplex, a continuous function on E(S) may not extend

to a continuous affine function on S, and this creates a technical problem. Other

methods may be needed.
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