TWO NEW TOPOLOGICAL CARDINAL INEQUALITIES

SUN SHU-HAO

(Communicated by Dennis Burke)

ABSTRACT. In this paper, two new cardinal inequalities are obtained. The first one is a common generalization of inequalities of Hajnal-Juhasz and Sapirovskii; the second one generalizes the inequality of Arhangelskiĭ.

It is well known that Hajnal-Juhasz's inequality [3], "For $X \in T_2$, $|X| \leq 2^{c(X)\chi(X)}$ " and Sapirovskii's inequality [2], "For $X \in T_3$, $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$ " are still two of the best cardinal inequalities. In other words, they have not been improved so far [2].

In the first part of this paper, we will establish a stronger inequality, "For $X \in T_2$, $|X| \leq \pi \chi(X)^{c(X)S\psi(X)}$ " which is the common generalization of the two inequalities above. Here, we define a collection \mathscr{U} of open sets of X to be a *strong pseudo-local base* at p if $\{p\} = \bigcap \{U : U \in \mathscr{U}\} = \bigcap \{\overline{U} : U \in \mathscr{U}\}$. Then we define:

 $S\psi(p, X) = \min\{|\mathscr{U}| \colon \mathscr{U} \text{ is a strong pseudo-local base at } p\} \cdot \omega,$ $S\psi(X) = \sup\{S\psi(p, X) \colon p \in X\}.$

It is immediate that $\psi(X) = S\psi(X)$ for T_3 spaces and that $\chi(X) \ge S\psi(X)$ for T_2 spaces. The latter inequality can be strict; for example, consider the subspace $N \cup \{p\}$ of βN , where $p \in \beta N \setminus N$.

For each space X it is obvious that $\pi\chi(X) \leq \chi(X) < 2^{c(X)\chi(X)}$. Thus

$$\pi\chi(X)^{c(X)S\psi(X)} < (2^{c(X)\chi(X)})^{c(X)S\psi(X)} < (2^{c(X)\chi(X)})^{c(X)\chi(X)} = 2^{c(X)\chi(X)}.$$

Hence our new inequality is at least as strong as that of Hajnal and Juhasz. Later we give an example to show that the above inequality can be strict. Because $\psi(X) = S\psi(X)$ when X is T_3 , it follows that our inequality also generalizes that of Sapirovskii mentioned above.

Our proofs make use of the Pol-Sapirovskii technique. We shall use the notation and terminology for cardinal functions employed in [3]. For the convenience of the reader, we repeat some of the definitions contained in this paper.

First, let |A| denote the cardinality of A; let λ, k be infinite cardinals and let ω denote the smallest infinite ordinal and the smallest infinite cardinal. The successor of k will be denoted by k^+ .

DEFINITIONS. Let X be a topological space and \mathscr{U} be a collection of nonempty open sets of X. Let $p \in X$; then \mathscr{U} is a local π -base at p if for each neighbourhood

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors January 27, 1987 and, in revised form, August 11, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54A25.

Key words and phrases. Cardinal inequality, strong pseudo-character, quasi-dense.

R of p, there exists a $V \in \mathcal{U}$ such that $V \subseteq R$. We define

$$\begin{split} &\pi\chi(p,X) = \min\{|\mathscr{U}| \colon \mathscr{U} \text{ is a local } \pi\text{-base for } p\} \cdot \omega; \\ &\pi\chi(X) = \sup\{\pi\chi(p,X) \colon p \in X\}; \\ &\chi(p,X) = \min\{|\mathscr{U}| \colon \mathscr{U} \text{ is a local base for } p\} \cdot \omega; \\ &\chi(X) = \sup\{\chi(p,X) \colon p \in X\}. \end{split}$$

A collection \mathscr{U} of open sets in X is said to be a pseudo-local base for p, if $\{p\} = \bigcap \{U : U \in \mathscr{U}\}$. Now we define

$$\psi(p, X) = \min\{|\mathscr{U}| \colon \mathscr{U} \text{ is a pseudo-local base for } p\} \cdot \omega;$$

 $\psi(X) = \sup\{\psi(p, X) \colon p \in X\}.$

A pairwise disjoint collection of nonempty open sets of X is said to be a cellular family. We define $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a cellular family in } X\}.$

The notation $[A]^{\leq k}$ denotes the set $\{B: B \subseteq A, |B| \leq k\}$.

THEOREM 1. For $X \in T_2$, $|X| \leq \pi \chi(X)^{c(X)S\psi(X)}$.

PROOF. Let $\pi\chi(X) = \lambda$ and $c(X)S\psi(X) = k$; for each p in X, let \mathscr{U}_p be a π -base for p such that $|\mathscr{U}_p| \leq \lambda$.

Construct a sequence $\{A_{\alpha}: \alpha < k^+\}$ of subsets of X and a sequence $\{\mathscr{U}_{\alpha}: 0 < \alpha < k^+\}$ of open collections in X such that

(1) $|A_{\alpha}| \leq \lambda^k, \ 0 \leq \alpha < k^+;$

(2) $\mathscr{U}_{\alpha} = \{ V : \exists p \in \bigcup_{\beta < \alpha} A_{\beta} \text{ such that } V \in \mathscr{U}_{p} \}, 0 < \alpha < k^{+};$

(3) For each r < k, if $\mathscr{V}_r \in [\mathscr{U}_{\alpha}]^{\leq k}$ and $W = \bigcup_{r < k} \overline{\bigcup \mathscr{V}_r} \neq X$, then $A_{\alpha} \setminus W \neq \emptyset$.

The construction is by transfinite induction. Let $0 < \alpha < k^+$ and assume that $\{A_{\beta}: \beta < \alpha\}$ has already been constructed. Then \mathscr{U}_{α} is defined by (2), i.e., we put $\mathscr{U}_{\alpha} = \{V: \exists p \in \bigcup_{\beta < \alpha} A_{\beta}, V \in \mathscr{U}_{p}\}$. It follows that $|\mathscr{U}_{\alpha}| \leq \lambda^{k}$. If $\{\mathscr{V}_{r}\}_{r < k} \in [[\mathscr{U}_{\alpha}]^{\leq k}]^{\leq k}$ and $W = \bigcup_{r < k} \bigcup \widetilde{\mathscr{V}_{r}} \neq X$, then we can choose one point of $X \setminus W$. Let S_{α} be the set of points chosen in this way. Since $|[[\mathscr{U}_{\alpha}]^{\leq k}]^{\leq k}| \leq \lambda^{k}$, one has $|S_{\alpha}| \leq \lambda^{k}$. Define A_{α} to be the set $S_{\alpha} \cup (\bigcup_{\beta < \alpha} A_{\beta})$. Then A_{α} satisfies (1), and (3) is also satisfied if $\beta \leq \alpha$. This completes the construction.

Now let $S = \bigcup_{\alpha < k^+} A_{\alpha}$; then $|S| \le k^+ \lambda^k = \lambda^k$. The proof is complete if S = X. Suppose not and let $p \in X \setminus S$; since $S\psi(X) \le k$, there exist open neighbourhoods $\{U_{\alpha}(p)\}_{\alpha < k}$ of p such that $\{p\} = \bigcap_{\alpha < k} \{\overline{U_{\alpha}(p)}\}$. For each $\alpha < k$, let $V_{\alpha} = X \setminus \overline{U_{\alpha}(p)}$, then $p \notin \overline{V_{\alpha}}$, and $\bigcup_{\alpha < k} V_{\alpha} = X \setminus \{p\} \supset S$.

For each $\alpha < k$, and for each $q \in (V_{\alpha} \cap S) \subseteq V_{\alpha}$, there exists a $V_q \in \mathscr{U}_q$ such that $V_q \subseteq V_{\alpha}$. Let $\mathscr{W}_{\alpha} = \{V : V \in \mathscr{U}_q, q \in V_{\alpha} \cap S, V \subseteq V_{\alpha}\}$; then $G_{\alpha} = \bigcup \mathscr{W}_{\alpha} \subseteq V_{\alpha}$, and it is easy to check that $V_{\alpha} \cap S \subseteq G_{\alpha}$. As $c(X) \leq k$, there exists a $\mathscr{V}_{\alpha} \in [\mathscr{W}_{\alpha}]^{\leq k}$ such that $\bigcup \mathscr{V}_{\alpha} = \overline{G_{\alpha}} \supseteq V_{\alpha} \cap S$, and $p \notin \bigcup \mathscr{V}_{\alpha}$. Let $W = \bigcup_{\alpha < k} \bigcup \mathscr{V}_{\alpha}$ then $p \notin W$.

Since $|\{V: \exists \alpha < k \text{ such that } V \in \mathscr{V}_{\alpha}\}| \leq kk = k < k^+$, there is an $\alpha_0 < k^+$ such that $\mathscr{V}_{\alpha} \in [\mathscr{U}_{\alpha_0}]^{\leq k}$ for each $\alpha < k$. Hence, by (3), one has $A_{\alpha_0+1} \setminus W \neq \emptyset$. But $W \supseteq \bigcup_{\alpha < k} (V_{\alpha} \cap S) = S$. This is a contradiction.

COROLLARY 1 (SAPIROVSKII). For $X \in T_3$, $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$.

PROOF. It is clear that $\psi(X) = S\psi(X)$ for $X \in T_3$.

COROLLARY 2 (HAJNAL-JUHASZ). For $X \in T_2$, $|X| \leq 2^{c(X)\chi(X)}$.

PROOF. By this theorem, $|X| \le \pi \chi(X)^{c(X)S\psi(X)} \le 2^{\pi\chi(X)c(X)S\psi(X)} \le 2^{c(X)\chi(X)}$.

REMARK 1. In this theorem, we omitted the condition "regularity". This improvement on Sapirovskii's theorem is not trivial, as there exist T_2 spaces for which Sapirovskii's inequality fails. For example, the Katetov *H*-closed extension of the positive integers, denoted kN, is such a space as $|kN| = 2^c$, $\pi\chi(kN) = \omega$, and $\psi(kN) = \omega$.

REMARK 2. Our theorem represents a considerable improvement on the theorem of Hajnal and Juhasz quoted above, as the gap between $\pi \chi(X)^{c(X)S\psi(X)}$ and $2^{c(X)\chi(X)}$ can be large.

To illustrate this, let us consider the Cantor cube $D^c = \prod_{s \in S} D_s$, where $D_s = D$, D denotes the two-point discrete space, for every $s \in S$, and |S| = c. It contains a dense countable subspace X such that $\chi(X) = c$ [1] and it is clear that $\psi(X) = c(X) = |X| = \omega$. By the regularity of X, one has $S\psi(X) = \omega$. Note that $\pi\chi(X) \leq \chi(X) = c = 2^{\omega}$. So $\pi\chi(X)^{c(X)S\psi(X)} \leq (2^{\omega})^{\omega\omega} = 2^{\omega} = c$. But $2^{c(X)\chi(X)} = 2^c$.

We also note that if $p \in \beta N \setminus N$, the space $N \cup \{p\}$ illustrates the same point.

Now we turn to the second result of this paper. We shall establish a theorem which strengthens Arhangelskii's theorem, "For $X \in T_2$, $|X| \leq 2^{t(X)L(X)\psi(X)}$ " (see [2, Remark 4.6]), where t(X) and L(X) denote the tightness and Lindelöf degree of X, respectively.

Let k be a cardinal number. We define a subset A of X with $|A| \leq 2^k$ to be k-quasi-dense if for each open cover \mathscr{U} of X there exist a $\mathscr{V} \in [\mathscr{U}]^{\leq k}$ and a $B \in [A]^{\leq k}$ such that $(\bigcup \mathscr{V}) \cup \overline{B} = X$; and let us write $qL(X) = \min\{k: \text{there} is \ a \ k-quasi-dense \ subset \ A\}$. (The notion of qL(X) was first considered by Liu Xiao-Shi.) Clearly, qL(X) is less than both the density d(X) and Lindelöf degree L(X). We also can prove that $qL(X) \leq s(X)$, where

$$s(X) \quad (= \sup\{|D|: D \subseteq X, D \text{ is discrete}\}\omega)$$

denotes the spread of X. In fact, by virtue of the theorem of Sapirovskii, "Let $X \in T_2$, let $s(X) \leq k$. Then there is a subset S of X with $|S| \leq 2^k$ such that $X = \bigcup \{\overline{A} : A \subseteq S, |A| \leq k\}$ ", we have only to show that the subset S is a k-quasidense subset of X. Let \mathscr{U} be an open cover of X. By virtue of another theorem of Sapirovskii which asserts that if \mathscr{U} is an open cover of X with $s(X) \leq k$, then there is a subset B of X with $|B| \leq k$ and a subcollection \mathscr{V} of \mathscr{U} with $|\mathscr{V}| \leq k$ such that $X = \overline{B} \cup (\bigcup \mathscr{V})$ [2, Proposition 4.8], we can easily find a subset A of S with $|A| \leq k$ such that $X = \overline{A} \cup (\bigcup \mathscr{V})$. In fact, for each $b \in B$, there is a subset A(b) of S with $|A(b)| \leq k$ such that $b \in \overline{A(b)}$. Let $A = \bigcup \{A(b) : b \in B\}$; then A is as required.

LEMMA. Let X be a space with $t(X)S\psi(X) \leq k$. Then for each subset A of X with $|A| \leq 2^k$, we have $|\overline{A}| \leq 2^k$.

PROOF. Let $x \in \overline{A}$; since $S\psi(X) \leq k$, there exists a strong pseudo-local base $\{U_{\alpha}(X): \alpha < k\}$ at x. Thus, $\{x\} = \bigcap_{\alpha < k} \overline{U_{\alpha}(x) \cap A}$. Since $t(X) \leq k$, for each $\alpha < k$, there exists $A_{\alpha} \subseteq U_{\alpha}(x) \cap A \subseteq A$ such that $|A_{\alpha}| \leq k$ and $x \in \overline{A}_{\alpha}$. Hence $\{x\} = \bigcap_{\alpha < k} \overline{A}_{\alpha}$ and $\{A_{\alpha}\}_{\alpha < k} \in [[A]^{\leq k}]^{\leq k}$. Therefore $|\overline{A}| \leq |[[A]^{\leq k}]^{\leq k}| = 2^{k}$.

REMARK. The above lemma generalizes Pospisil's inequality, which states that if $X \in T_2$, then $|X| \leq d(X)^{\chi(X)}$ [2, Theorem 4.4].

THEOREM 2. For $X \in T_2$, $|X| \leq 2^{qL(X)t(X)S\psi(X)}$.

PROOF. Let $qL(X)t(X)S\psi(X) = k$; and let A be a k-quasi-dense subset of X. For each $x \in X$, let \mathscr{V}_x denote a family of open neighbourhoods $\{U_\alpha(x)\}_{\alpha < k}$ such that $\{x\} = \bigcap_{\alpha < k} \overline{U_\alpha(x)}$ and $|\mathscr{V}_x| \leq k$. Using the above lemma, we construct an increasing sequence $\{H_\alpha: 0 \leq \alpha < k^+\}$ of closed sets of X and a sequence $\{\mathscr{V}_\alpha: 0 < \alpha < k^+\}$ of open collections in X such that:

(1) $|H_{\alpha}| \le 2^k, \ 0 \le \alpha < k^+;$

(2) $\mathcal{V}_{\alpha} = \{V : V \in \mathcal{V}_{p}, p \in \bigcup_{\beta < \alpha} H_{\beta}\}, 0 < \alpha < k^{+};$

(3) if W is the union of $\leq k$ elements of \mathscr{V}_{α} , $B \in [A]^{\leq k}$ and $X \setminus (W \cup \overline{B}) \neq \emptyset$, then $H_{\alpha} \setminus (W \cup \overline{B}) \neq \emptyset$.

Now let $H = \bigcup_{\alpha < k^+} H_{\alpha}$; as $t(X) \le k$ and H_{α} is closed for each $\alpha < k^+$, H is closed. We will show that $H \cup \overline{A} = X$, from which it follows that $|X| \le |H| + |\overline{A}| \le 2^k$.

Let $q \in X \setminus H$. For each $p \in H$, choose a $V_p \in \mathscr{V}_p$ such that $q \notin \overline{V}_p$. Now $\bigcup \{V_p : p \in H\} \supseteq H$. Since $qL(X) \leq k$, there exist a $\mathscr{V} \in [\{V_p : p \in H\}]^{\leq k}$ and a $B \in [A]^{\leq k}$ such that $H \subseteq (\bigcup \mathscr{V}) \cup \overline{B}$. If $q \in \overline{B} \subseteq \overline{A}$, then the conclusion holds. If $q \notin \overline{B}$, then $q \notin (\bigcup \mathscr{V}) \cup \overline{B}$, i.e., $(\bigcup \mathscr{V}) \cup \overline{B} \neq X$. Hence we can find a $\beta < k^+$ with $\mathscr{V} \in [\mathscr{V}_\beta]^{\leq k}$ since $|\mathscr{V}| \leq k$ and $H = \bigcup_{\alpha < k^+} H_\alpha$. So $H_\beta \setminus ((\bigcup \mathscr{V}) \cup \overline{B}) \neq \emptyset$, which contradicts with the fact that $H \subseteq (\bigcup \mathscr{V}) \cup \overline{B}$.

COROLLARY. For $X \in T_2$, we have $|X| < 2^{L(X)t(X)\psi(X)}$.

PROOF. It is easily checked that $S\psi(X) \leq L(X)\psi(X)$, so

 $L(X)\psi(X) = L(X)S\psi(X).$

The conclusion now follows from the theorem above.

EXAMPLE. Let X be the Niemytzki plane. Then $d(X) = qL(X) = \chi(X) = t(X) = S\psi(X) = \omega$, but $L(X)t(X)\psi(X) \ge L(X) > \omega$.

REMARK. In Theorem 2, $S\psi(X)$ cannot be replaced by $\psi(X)$ since there exists a Hausdorff space X of cardinality 2^c (namely the Katetov *H*-closed extension of N) that contains a countable dense subset A consisting of isolated points of X such that the subspace $X \setminus A$ is discrete. It is easy to check $qL(X) = d(X) = \psi(X) = t(X)$, but $|X| > c = 2^{qL(X)t(X)\psi(X)}$.

ACKNOWLEDGEMENT. The author would like to thank the referee for many valuable suggestions and very careful corrections.

REFERENCES

- 1. R. Engelking, General topology, PWN, Warszawa, 1977.
- 2. R. E. Hodel, *Cardinal functions.* I, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, 1984, pp. 1–61.
- 3. I. Juhasz, Cardinal functions in topology-ten years later, Math. Centrum, Amsterdam, 1980.
- 4. B. Sapirovskii, Canonical sets and character, density and weight in compact spaces, Soviet Math. Dokl. 15 (1974), 1282–1287.

DEPARTMENT OF MATHEMATICS, SHANGHAI INSTITUTE OF MECHANICAL ENGINEER-ING, SHANGHAI, PEOPLES REPUBLIC OF CHINA