
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 104, Number 1, September 1988

THE INVERSE LIMIT OF THE FUNDAMENTAL GROUPS
OF BRANCHED CYCLIC COVERINGS

MICHAEL DELLOMO

(Communicated by Haynes R. Miller)

ABSTRACT. Cowsik and Swarup [CS] have shown that the homology groups

of the infinite cyclic cover of a knot inject into the inverse limit of the homology

groups of the branched cyclic covers. They also give conditions under which the

injection is an isomorphism. We prove an analogous result for the fundamental

group and generalize it to the case of links.

The relationship between the homology of the infinite cyclic cover of a knot

complement and that of the inverse limit of the branched cyclic covers has been

investigated in [CS, Dl, D2]. We would like to extend some of these results to

homotopy.

Let K be a knot in S3, A the infinite cyclic cover of A = S3 — K, and Xn the

n-fold cyclic cover of A. We write £„ for the branched n-fold cover of S3 branched

over K. This gives the following commutative diagram:

X   -»     Xk     <-►     Efc

\ T T

Xnk     ■—►     2-,nk

The sets {Xk} and {£&} form inverse systems of topological spaces and we can

construct the inverse limits A = limA¿ and Ê = limE/t as well as inverse limits

of their homology and homotopy groups. The diagram above induces maps X —*

X —► Ê. Call the composition of these maps i: X —* Ê.

Cowsik and Swarup [CS] use commutative algebra to show that in homology we

have the following.

THEOREM [CS]. The map i, : H» (X) -» lim H* (£*) = #* (Ê) ( Cech homology)

is an injection.

They also give conditions under which i, is an isomorphism. -Oi(Ë) and the map

i, are explicitly calculated in [Dl, D2].

What we would like to do now is investigate the map ¿i : iri(X) —► lim7Ti(£*,).

We have the following.

MAIN THEOREM. The map i\\ 7Ti(A) —* lim7ri(£fc) is injective. In fact, there

is an exact sequence of the form 0 —+ 7Ti (A) -+ lim7r(I!fc) —► lim1 Hk —► Z/Z —* 0

where Hk is the kernel of the map iri(Xk) —► iri(zZk) and Z = Y\pZp, i.e., the

product taken over all primes, p, of the p-adic integers, Zp.

Received by the editors August 12, 1987 and, in revised form, October 14, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 57M25, 55P55.

Research supported in part by SUNY Faculty Summer Research Fellowship.

©1988 American Mathematical Society

0002-9939/88 $1.00 + $.25 per page

321



322 MICHAEL DELLOMO

In order to obtain this result we must refer to the inverse limit (and lim1)

of a system of nonabelian groups. In this context we define the following (see

[MSI]): Let {Gk} be an inverse sequence of nonabelian groups with homomor-

phisms pk,k+i : Gk+i —> Gk. Define

limGfc = < sequences (gk) e fjGfc Pk,k+l(Çk+l) — 9k

Define lim Gk = YlkGk/ ~ where ~ is defined as follows: for x = (xk), y =

(Vk) C n*: Gk we say x ~ y provided there exists (uk) e Ylk Gk with yk =

ukxkpk¡k+i(uk+i).

Note 1. If the groups are abelian, then the definitions reduce to the more familiar

ones, for example, the map d: \\k Gk —» Ylk Gk defined by

d((xk)) = (xk - pk,k+i(xk+i))

has limGfc as its kernel and lim1 Gk as its cokernel.

Note 2. lim1 Gk may not be a group if the Gk are not abelian. Therefore we

must be careful of how we interpret certain exact sequences. In particular, the

following theorem is true for abelian and nonabelian groups:

THEOREM. Given inverse sequences {Gk}, {G'k}, and {G'k} of groups and com-

patible exact sequences for each k, namely, commutative diagrams

0

0

GÍfc+i

Pk,k + 1

Gk

G'

+i  —

Pfc.fc+i

Gk    —

fin

Pk,k+1

G'L

0

0

There is a natural exact sequence

0 -» lim G'fc -» lim Gk -♦ lim G'¿ -^ lim1 Gk -» lim1 Gk -♦ lim1 G'¿ -» 0

It is understood that all maps to the right of and including 6 are maps of sets. For

the proof see [MSI].

Note 3. The above definitions are for inverse sequences. Since the systems we

will be dealing with all have convenient cofinal subsequences, we will not need the

more general version. A complete general treatment can be found in [BK, p. 307].

We now prove a lemma from which the Main Theorem will follow.

LEMMA. The sequence 0 —► lim//fc —» 7r,(A) —> lim7Ti(£fc) —► lim1 Hk —►

Z/Z —» 0 is exact.

PROOF OF THE LEMMA. Consider the system of exact sequences

0-► Hk  -—-♦ m(xk)  —* 7n(E0  -► o

Hnk ^i(Xnk) 7Tl(Snfc)
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Passing to inverse limits, we get

(1) 0 -* \imHk - lim7Ti(Afc) -► \imiri(Zk) -> lim1^)

-» lim17n(Afc) -» lim1 jTi(Efc) -» 0.

Now we examine the individual terms of this exact sequence. Note that the

lim1 terms can be calculated by working with a cofinal subsequence, e.g., {Hn\},

n = l,2,....
First we look at lim17Ti(Efc). We can form the following sequence of seis 0 —>

Ker —► 7To(E) —> lim7ro(£fc) —► 0. If the bonding maps of the inverse system

were fibrations then this sequence would be exact with Ker = lim1 7Ti (E*,). (See

[MSI] for details.) Unfortunately they are not fibrations, but they do have a

(nonunique) path lifting property. Therefore, we do get the above sequence, but

the map Ker —► lim17ri(E/t) is not necessarily one to one. It is, however, onto. (See

[MSI, pp. 178-183]. Steps 1-3 of Lemma II.7.1.3 all work in this context.) Now

7Tn(E) = 0 since E is path connected. Indeed there is a path from any point of E

to the knot at its core. Therefore Ker = 0 so lim17Ti(Ejt) = 0.

REMARK. We could have shown this using a more geometric argument. The

maps Ti(A) —* TTi(Efc) can be shown to be surjective, hence the maps TTi(zZnk) —*

7Ti(Efc) are also surjective. We will use this argument later to determine what

happens if ¿i is an isomorphism. For now, however, the lifting property argument

allows us to point out the strong connectivity of £, which is interesting in its own

right.

Now consider lim7ri(Afc) and lim17r,(Afc). Since Xnk —* Xk —► A is a composi-

tion of covering maps, we have the following diagram:

o-►"  *i(Xk) c

o-► m(xnk) <

Passing to inverse limits we get

0 — limTT^Afc) -*ia(X) •£ Z -♦ lim1 m(Xk) -* 0.

The maps pk factor as n(X) -» Z —* Z/k. So in the limit we have p: n(X) -»

Z -► Z. Now the kernel of 7r,(A) -► Z is tti(X) so limTr^Ajt) = 7r,(À) and

lim1 iri(Xk) Si Z/Z.
The lemma now follows by substituting these results into exact sequence (1).

PROOF OF MAIN THEOREM. Let e be the identity element of any group in

question. It is enough to show that for each g e ffi (A), g ^ e, we can find a k so

that the image of g in ni(E,k) is not the identity. It then follows that the image of

g t¿ e in lim7Ti(Efc). We require the following result due to Hempel [H].

THEOREM [H]. The fundamental group of a Haken 3-manifold is residually fi-

nite, that is y g e ni(X), g / e 3 a finite group F and a homomorphism h: ^i(X) —►

F with h(g) ¿eeF.

Since knot complements are Haken, this theorem applies to our situation.

Tn(A)
Pk

Z/k

tti(X) -z£-+ Z/nk
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Let g ^ e be an element of ^(A). We have g i—> g' e iri(X). 7Ti(A) is residually

finite so for some A; there exists a k element group Fk and a homomorphism h

with h(g') t¿ e € Pfc. Let a be a small loop in A that links once with the knot

(i.e. a meridian of a regular solid torus neighborhood of K). Now if a = [a] e

7Ti(A) then a i-> 1 e Z/k in the sequence 0 —♦ 7Ti(Afc) —► 7r,(A) —► Z/k —> 0.

Therefore ak € 7r1(Afc). When we form Efc from Xk by sewing in a solid torus, all

conjugates of the paths ak become homotopically trivial. Specifically, we see that

the normal subgroup generated by ak in 7Ti(Afc) is precisely Hk and that 7Ti(Efc)

can be described as the quotient of 7Ti (Afc) by the relation ak = e.

Let Nk be the normal subgroup generated by ak in 7Ti(A).

lowing commutative diagram:

This gives the fol-

Hk

f
Mxk)

Nk

f
TTi(X)

We can form the group G = ■Ki(X)/Nk. Since h maps 7Ti(A) to a finite group

of order k we have h\pfk = 0, i.e., h sends Afc to the identity of Pfc. Therefore h

induces a map h!' : G —> Pfc and a commutative triangle

7Ti(A)      -H» G

\h /tí

Fk

Combining the square and triangle above we have the commutative diagram

i<
0 Hk

n
7T,(X)

s*
TTl(Afc)

(2) Afc MX)

0

Now we return to g e iri(X). We have g i—> g' e ^i(X) and g i—> gk e 7Ti(Xk). The

image of g in 7Ti(Efc) is g'k = ip(gk). By commutativity, we have h'(4>(g'k)) /ee Pfc.

Consequently g'k ̂  e e 7Ti (Efc). This completes the proof of the Theorem.

Cowsik and Swarup go on to prove that the map i* is an isomorphism only when

the Alexander polynomial of K divides a cyclotomic polynomial. The analogous

result for ii is considerably more restrictive:

THEOREM.   The map t'j

the knot, K, is trivial.

7Ti(A) —> lim7Ti(Efc) is an isomorphism if and only if

PROOF. If K is trivial, the result is obvious since 7Ti(A) = 7Ti(£fc) = 0. So

suppose z'i is an isomorphism. Note that 7Ti(A) —» 7r,(Efc) is surjective for all k.

Indeed, for any x € 7Ti(Efc), there is a loop a in Efc with [a] = x which has zero

linking number with the knot, a can also be chosen so that it does not intersect

a small tubular neighborhood of K.  Such an a will lift to a loop in A.   We can
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therefore write down the following system of exact sequences

o-► Jfc -► tti(X) -► 7n(Efc) --» o

t t ±

i î; Î
0   -►   Jnk   -►   MX)   -►   7Tl(E„fc)--»   0

Passing to inverse limits, we have

0 —► lim Jfc —+ 7Ti(A) -■♦ lim7Ti(Efc) —* lim1 Jk —» 0.

Now ¿i is an isomorphism so lim Jk = lim1 Jk = 0. Therefore the system {Jfc}

is isomorphic to 0 (in the category of pro-groups; see [MSI, II.6.2, Theorem 12]

for details). By the Morita lemma [MSI, DS] we have that Vn 3 m so that the

following diagram commutes:

But since the map Jnm —* Jn is an inclusion, we have that Jnm = 0. Therefore

3L = nm with 7ri(A) = 7ri(E¿).

Let a be the homotopy class in 7Ti (A) of a small loop around the knot. Then

Va; e ti(A) we have axa-1 e 7ri(A). (This is the classical action of the meridian

of k on 7T,(A).) Also we have aL = e e 7Ti(Efc) so the isomorphism from 7Ti(A)

to 7Ti(£/J sends x and aLxa~L to the same element. Therefore aL commutes in

7Ti(A) with every element of 7ri(A) = [7Ti(A),7Ti(A)]. Furthermore, since a maps

to a generator of 7ri(A)/7r1(A) = Zwe have that aL commutes every element of

7Ti(A). Therefore aL is in the center of 7Ti(A).

Bürde and Zieschang [BZ] showed that the only knots with nontrivial center are

torus knots. For the (p, q) torus knot with p and q relatively prime, the fundamental

group of A has the following presentation: 7r,(A) = {x, y: xp = yq} (see [R]).

The center of 7r,(A) is the cyclic group generated by xp. With respect to this

presentation, we can express one meridian as xuyv where vp + uq = 1. The other

meridians can be written as conjugates of this one with respect to xb.

We can assume that a = xuyv (the proofs for the other choices are similar). If

K is nontrivial then (xuyv)L would have to be in the center and, hence, be equal to

xnp for some n. But this is impossible since every element of tti (A) can be written

uniquely in the form xaiybl ■ ■ ■xamybmwc where 0 < a, < p, 0 < o¿ < p Vz > 1,

-q < bm < 0, -q < bj < 0 V? > 1 and w = xp = yq (see [MKS, Chapter 4] for

details). This completes the proof of the theorem.

Finally we can use part of the proof of the Main Theorem to obtain an analogous

result for links. In particular, let A be the complement of an Z element link in S3,

let A be the universal abelian cover of A and let {Xab} be the inverse system of

the unbranched finite abelian covers of A. Write {E^s} for the inverse system of

branched abelian covers of S3 branched over L. We restrict our attention to the

cofinal subsystems {Afc} and {Efc} where 7Ti (A)/7r,(Afc) = ©i=1 Z/k.

Since link complements are also Haken, we can apply the proof of the Main

Theorem with only slight modifications. Choose meridians ai,..., a;, one for each
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component of L and construct the group G by taking the quotient of 7Ti (A) by the

relations ak = e. We eventually obtain a diagram similar to (2). Therefore we have

COROLLARY.   For links, the map ii : iTi(X) —* lim7Ti(E,4B) is an injection.
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