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ABSTRACT. Suppose « is the complex dilatation of an extremal quasiconfor-
mal homeomorphism of the unit disk onto itself. Then, except in special cases,
the width of the set of arguments of k must strictly exceed =.

1. Introduction. In this paper, C is the set of complex numbers, D = {z €
C: |2| < 1} is the unit disk, -#? is Lebesgue two dimensional measure on C, and
Z1 denotes Lebesgue one dimensional measure on the set of real numbers R. For
0 < § < m, the open sector with vertex angle 26 about the positive real axis is
denoted

S(0) = {re": 0 < r < oo,|t| <6}

We set sgn z = z/|z| for z € C — {0}, and sgn0 = 0.
If k is bounded and .%’? measurable on D, then ||«||oc denotes the infimum of
the set of numbers K such that |k(z)| < K for .#? almost all z € D: i.e.

ll€llo = esssup |&(z)].
zeD

B shall denote the set of all functions, f, which are holomorphic on D and satisfy

Il = /D ()| P2 (2) < co.

In addition, B; = {f € B: ||f|l1 = 1} denotes the boundary of the unit ball in
B. In the current literature the Banach space B is often referred to as one of the
Bergman spaces.
We introduce a constant, pertaining to B, which will appear in our main theorem.
Let C(B) denote the infimum of the set of all C € (0, 00] such that

| r@1az*e) < ¢ [ Res@1az* @)
D D

whenever f € B and Im f(0) = 0.

In [Har-Litt] we find the first proof that C(B) < oo. More recently, one can
learn that C(B) < 7 from [Ax] (see Theorem 1.21). For the convenience of the
reader, however, we include a short (perhaps new) proof that C(B) < co in §3.

As the result of this paper pertains to the theory of quasiconformal mapping,
we briefly review the relevant part of that theory here. We shall say that « is a

Received by the editors June 5, 1987 and, in revised form, October 5, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C60; Secondary 30C75.

The first author is supported by grant OGPIN-016 of the Natural Sciences and Engineering
Research Council of Canada. The second author is supported in part by a grant from the National
Science Foundation.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page




THE ARGUMENT OF AN EXTREMAL DILATATION 499

dilatation if x is a bounded and .#? measurable function on D and ||klec < 1. If
k is a dilatation, then there is one and only one homeomorphism Hy: D — D such
that 0H,(2) = k(2) - 0Hx(z) for £? almost all z € D, and H,(w) = w for all w €
{1,7,—1}: a proof of this fundamental statement appears in [Ah1]. Furthermore,
we shall say « is an extremal dilatation if k is a dilatation and ||kl < [|£1]lco
whenever «; is a dilatation and H,(w) = Hy, (w) for all w € C such that |w| = 1.
Thus, the statement that & is an extremal dilatation means that H, (the normalized
quasiconformal homeomorphism of D having dilatation ) has the least maximal
dilatation among all homeomorphisms of D having the same boundary values as
H,.

The fundamental characterization of extremal dilatations is due to Richard
Hamilton, Edgar Reich, and Kurt Strebel [Ham, Reich-Strebel]. The version of
this characterization cited below contains an important elaboration due to Strebel
[Strebel], which provides a separation into two alternatives.

THEOREM (HAMILTON, REICH, STREBEL). Suppose k is a dilatation. Then
K 1s an extremal dilatation if and only if one of the following statements is true:

(1) There exist f € By and k € [0,1) such that k(z) = ksgn f(z) for £? almost
allze D.

(2) There is a sequence (fn)S%,, of elements of By, converging to zero uniformly
on compact subsets of D, such that

/ F2(2)(2) L(2)| = 5]leo-
D

Thus, the problem of checking whether a particular dilatation is extremal re-
duces to that of checking condition (2) above. Our main result, Theorem 1 below,
addresses this question.

lim
ntoo

THEOREM 1. Suppose k is a bounded, X% measurable function on D, 7/2 <
§ < 7/2 + arctan(1/2C(B)), and sgnk(z) € S(0) U {0} for £? almost all z € D.
Then k s an extremal dilatation if and only if there exist k € [0,1) and f € B,
such that
k(2) =k -sgn f(2)
for £? almost all z € D.
We also emphasize

COROLLARY 2. Suppose k is an extremal dilatation and k(z) s a real number
for Z? almost all z € D. Then there exists k € (—1,1) such that k(z) = k for £?
almost all 2 € D.

A complete characterization of extremal dilatations which is more explicit than
that of Hamilton, Reich and Strebel is not known, although A. Harrington, M. Or-
tel, E. Reich, K. Strebel and others have obtained characterizations of the extremals
within special classes of dilatations: see, for example, [O] and the references therein.
From this work, it is easy to conjecture that the number /2 + arctan(1/2C(B))
may be replaced by 7 in Theorem 1, but a proof of this is not known to us.

By selecting a sequence (f,)%%, from B; which converges to zero uniformly on
compact subsets of D, and by approximating sgn f,, on an appropriate sequence of
annuli in D, it is possible to construct a dilatation «, which satisfies condition (2)
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above, and assumes only countably many values. Consequently the measure of the
set of arguments of a dilatation is not pertinent to extremality.

2. Proof of Theorem 1. By the theorem of Hamilton, Reich and Strebel, it
suffices to prove the following statement.

LEMMA 1. Suppose & is a bounded, Z£? measurable function on D, ||&|leo > 0,
/2 < 8 < m/2+arctan(gz(gy), and sgnk(z) € S(0)U{0} for £ almost all z € D.
Also, suppose (fn)S%, is a sequence from By which converges to zero uniformly on
compact subsets of D. Then

lim sup
nToo

[ 16 42| <l
PROOF. We may assume ||k||coc =1 and, for each n =1,2,..., that

/D Fa(2)k(2)dL(2) >0 and  fa(0) =0.

Choose 6; so that
6 < 0; < m/2+ arctan(1/2C(B)),

and set

Q. ={2€D: — fpo(2) € S(r—6,)}.
Then, if z € (1,,, we have

Re fn(2)k(2) < |fu(2)k(2)| cos(6; — 6).

So, for each n, we have
/ fn(2)K(2) dZ2%(2) = Re /
D D-Q,
<[ @I +eost-0) [ 121 dFH ).
D-Q, Qn

fal2)k(2) &L (2) + Re /Q ful2)(2) dL2(2)

Since cos(f; — 0) < 1, it follows that either

lim sup / Fa(2)(2) d2(2) < 1,
D

ntoo

as required, or else
lim inf / |fn(2)| dL2(2) = 0.
ntoo Qn

Assuming the second alternative, we define

Zn={2€ D:Re fo(z) <0} —Qy,
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and note (since f,(0) = 0 for all n) that

| Ren@laz*@) =2 [ IRe fu(2) 22 (2)
D {2€D: Re fn(2)<0}
<2. /g [Re fa(2)| L2 (2) + 2 /ﬂ IRe fu(2)| ()
<zun (0 - 3)|- [ imfu(e)l a2
+2. /Q IRe fa(2)| d22(2)
< 20(B)|tan (01 - 7| /D IRe fn(2)] d22(2)

+2. /Q [Re ful(2)| 42 (2).

Since 2C(B)|tan(f; — 7/2)| < 1 and liminfpieo [ |fn(2)|d-Z2(2) = 0, we con-
clude that liminfnteo [p |Re fn(2)| d-Z%(2) = 0, and hence

liyinf /D |fnl(2)| dL?(z) = 0

(since C(B) < o0o). But this contradicts the assumption that f, € B; for all n.
Therefore, the second alternative is impossible and Theorem 1 follows.

3. A proof that C(B) < oo. Let f be an element of B, and, without loss
of generality, assume that f(0) = 0. Define u = Ref, and r, = 1 — 27" for
n=12,.... If |z| < rpy1, then

f(z) = (2m)~! /% Mu(mﬂei‘) Az (t),

0 Tnt1€t—z
and easy estimates show that, forn =1,2,...,

2r

/27r |f(rn€®) = f(rn—16")| 4L () < 23/2/ |u(rns1€)| AL (6).
0 0

Moreover, by using the monotonicity of integral means to estimate the integrals
over annuli, we find

oo 2 o0 2
Y2 / |f (ras1€)|d21(0) < [IfllL < Y 27" / |f (rne®®)| &L (6),
n=1 0 Y

N=1

O =t
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together with the analogous inequalities for u. Since f(0) = 0, it follows that

(e 27
I < 352" /0 [(raé®)| 2 (6)

2n
<Zz‘ Z/ |f(rie®) = f(rie—16)| dL(6)
=2 }: 2 /0 1 (reei®) = f(re1e®)| 421 (60)

3/222' / u(re+1€”)| 421 (6)
< 10(2)¥2 / lu(2)] 422 (2).
D
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