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ABSTRACT. We examine the subspace structure of the Lorentz function space

Lp,g[0, oo). Our main result is that a subspace of LPlg[0, oo), p ^ 2, q < oo,

must either strongly embed in Lp[0,1] or contain a complemented copy of lq.

1. Introduction. In this paper we examine the subspace structure of the

Lorentz function spaces LPt0[0,1] and Lp,q[0, oo). (Throughout, subspace will mean

a closed, infinite-dimensional subspace.) Our main result, presented in §2, is that a

subspace of Lp^q[0,oo), p ^ 2, q < oo, is either isomorphic to a strongly embedded

subspace of Lp[0,1], or contains a complemented copy of lq. (Recall that a subspace

X of Lp is strongly embedded if the Lp- and Lo-t°P0l°gies on X coincide.)

From one point of view our results should be considered as extensions of certain

results which are known for LPi9[0,1] and lp<q (cf., e.g., [9, 1]). But, unlike the

space Lp, results for Lp,q{0,1] do not automatically extend to the space LPtq[0, oo);

indeed, as we shall see, the spaces LPi9[0,1] and Lp<q[0,oo) are not isomorphic.

Thus we prefer to emphasize a slightly different point of view: the interval [0, oo)

is the more natural setting and plays an essential role in our arguments. Moreover,

several of our techniques are quite general and may be of independent interest (in

particular, Corollary 2.7 below).

Our notation is more or less standard and for the most part agrees with that

of [20]. In what follows we will need to make use of many facts about LPA, both

as a lattice and as an interpolation space; while we will attempt to recall most

of these facts, the reader is encouraged to refer to [20] and its references for any

unexplained terminology.

We write the Lebesgue measure of a measurable subset A of Rn as |j4|. Given a

measurable, real-valued function / we define the support of / as supp/ = {/ ^ 0},

the distribution of / as dj(t) = \{[f\ > t}\, and the decreasing rearrangement of / as

f*(t) = mf{s > 0: df(s) < t} = djx(t). (Note that d¡ is actually the distribution

of |/| and that /* : [0, oo) -> R.)

For 0<p<oo, 0<<7<oo, and / = [0,1] or [0, oo), the Lorentz function space

LPA(I) is the space (of equivalence classes) of all measurable functions f ou I for
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which ||/||p,9 < oo, where

ll/llp,,= (^/*(0,d(í,/p))   ",       Q<oo,

= sup t1/pf*(t), 7 = 00.
tel

If the interval / is clear from the context, or if a particular discussion does not

depend on /, we will simply write LPA.

There is also an obvious sequence space analogue of Lp%q: the space ¿Pi9 of all

sequences (üí)^c=1 for which ||(a¿)||Pig < oo, where

f" oo \1/1

Mil™ =  E<V/p - (»' - i)9/p)     >    <? < °°.
(2) leí J

= supina*, q = oo,
i

and where (a*) is the decreasing rearrangement of (|oi|). Clearly, /Pi9 is isometric

to a sublattice of Lp¡q[0, oo). Also, for any p we have LPiP = Lp and ZPiP = lp; in

this case we will simply write || • ||p. It is known that these norms satisfy ||/||p,g2 <

||/|Ip,qi whenever qt < q2 [20, Proposition 2.b.9].

It is well known that for 1 < q < p < oo, (1) defines a norm under which LPi9

is a separable, rearrangement invariant (r.i.) Banach function space; otherwise,

(1) defines a quasi-norm on Lp q (which is known to be equivalent to a norm if

1 < p < q < oo). Because we are only concerned with the isomorphic structure

of Lp>q here, we will make two conventions: throughout we will simply refer to the

expression in (1) as the "norm" on ¿p,9; and we will use C as a symbol representing

a positive, finite constant (whose precise value may change from line to line) which

depends only on p and q.

Next recall that for any 0 < p < oo and 0 < q < oo, LPiî is equal, up to an

equivalent norm, to the space [LPl,LP2]$iQ constructed using the real interpolation

method, where 0 < pi < p2 < oo, 0 < 6 < 1, and 1/p = (1 - 0)/pt + 0/p2. (See [2

or 20, Theorem 2.g.l8].)

As a final bit of preliminary information we recall a result from [6]: LPi9 satisfies

an upper r-estimate and a lower s-estimate for disjoint elements where r = min(p, q)

and s = max(p, q).

2. Subspaces of Lpq. We begin with a criterion for a sequence in Lp¡(¡ to be

equivalent to the /, basis (cf. [19, Proposition 4.e.3]).

LEMMA 2.1. Let 1 < p < oo, 1 < q < oo, and let (/„) be a sequence of

norm-one vectors in LPiQ[0, oo). ///* —► 0 a.e. as n —* oo, then there is a subse-

quence of (fn) which is equivalent to the unit vector basis for lq and which spans a

complemented subspace of Lp^q[0, oo).

PROOF. By a standard argument, we may choose a sequence sn I 0 so that

|{|/n| > £n}| < £n- Setting Un = {|/„| > en}, gn = /„ • xun, and hn = fn - gn,

we have | suppgvj < en and \hn\ < en a.e. Without loss of generality, we may also

suppose that infn ||ffn||p,g > 0 and inf„ ||/in||p,g > 0.

If en —* 0 fast enough, then each of (gn) and (hn) will have a common sub-

sequence equivalent to the /, basis; the proof in either case follows more or less
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directly from the analogous result for /PiQ (see [18, 1, and 5]). That this is so for

(gn) is due to Figiel, Johnson and Tzafriri [9] in case q < p, but the proof for

p < q is very similar (cf. e.g. [3]). The argument for (hn) is again very similar;

for completeness we will sketch the proof in the case p < q (recall that in this case

|| • ||Pig is a quasi-norm with, say, constant C).

First, for simplicity, we may suppose that each hn has norm one, has compact

support An, and that the sequence sn = \An\ is increasing. Now let e > 0 and note

that since hn —» 0 uniformly we may further suppose, by passing to a subsequence

if necessary, that

(3) \\hn+1 ■ XA\\p,q < e/2nC   whenever ]A\ < sn.

Thus we may choose an automorphism r of [0, oo) which, for each n, satisfies

(4) Bn+i = r[sn,sn+i) C An+i,        \An+i\Bn+i\ < sn,

and

(5) r " \hn+i(T(t)w d(t</p)
J sn

< 1 +£.

It now follows easily from (3), (4), (5), and the fact that p < q, that for any scalars

(an) we have

1/9 / \ l/î

C-\l-e) fe|a„|«j       < \T\annhnXBAqpA

< / , Qn<ln Xb„ < /  , Q-nhn

P,Q

<C\J2\an\\\hnXAn\B ^2anhnXBn

P,Qj

<c\e-¿2\an]-2-n+(j2K\q f^   \K(

/ \ i/q
<C(1 + 2s)-[J2K\9)      -

1/9'

-(t))\U(t"/p)

Finally, the existence of a projection onto either [gn] or [hn] is straightforward

(again see [9], but see also [17]).    ■

COROLLARY 2.2. (i) For 1 < p < oo, 1 < q < oo, and p ^ q, Lp¡q[0,1] and

LPtq[0,oo) are not isomorphic.

(ii) For 1 < p ,¿ q < 2, LPt<1[0, oo) is not isomorphic to any r.i. function space

on [0,1].

PROOF, (i) For 1 < p < oo, 1 < q < oo, it follows from Lemma 2.1 and [12,

Lemma 8.10] that the only spaces with symmetric basis which are isomorphic to

complemented subspaces of LPi(j[0,1] are lq and l2- This is not the case in Lp%q[0, oo)

since ¿Pl9[0, oo) obviously contains a complemented copy of lp¡q on disjoint vectors.
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(ii) This is a simple variation on an argument found in [12, Proposition 8.14].

First note that, for 1 < p ^ q < 2, LPtQ[0,oo) is s-concave for max(p,q) < s < 2.

Thus by [12, Theorem 5.6], if an r.i. function space X on [0,1] were isomorphic to

LP:9[0,oo), then, up to an equivalent norm, either X = ¿2(0,1] or X = Lp:9[0,1],

but neither option is possible.    ■

REMARK. Of course, Lp[0,1] and Lp[0,00) are isomorphic. It would be inter-

esting to know whether LPiOO[0,1] and Lp>oo[0,00) are isomorphic. However, since

Lp,<x> contains a sublattice isomorphic to /«, (i.e., Lemma 2.1 also holds for q = 00),

Lp,00 will be of only passing interest here.

Our next proposition will show that the closed linear span of a disjointly sup-

ported sequence in LPiQ contains a complemented copy of lq.

PROPOSITION 2.3. Let X be an r.i. function space on [0,00) which is q-concave

for some q < 00 and which for some p > 0 satisfies ||x[o,t]l|x > C~1t1'p for all

t >0.
If (fn) is a disjointly supported sequence of norm-one vectors in X, then there

exists a subsequence (/¿) of (/„) and an increasing sequence of integers (nk) such

that the normalized blocks

nk + l

Fk= £ n
i=nk+l      I

nk + l

i=nk+l X

satisfy Ft* -♦ 0 a.e. as k —► 00

PROOF. By Helly's selection theorem [22, p. 221] we may suppose, by passing to

a subsequence if necessary, that the sequence (/*) converges a.e. to some decreasing

function / > 0. Moreover, since X is ç-concave, we also have f E X and ||/||x < 1

[20, p. 30]. If / = 0 we are, or course, done; thus we suppose that |{/ > 26}\ > 26

for some fixed 6 > 0.

Thus we may rewrite /„ as gn + hn, where (gn) is a disjointly supported sequence

in X with ¡7* = / for all n, and where (hn) is a disjointly supported sequence in X

with h*n —► 0 a.e. (n —» 00). We may further suppose that ]{]hn] > en}\ < en where

en [0 and Y^Ü=i e« < à- I* 's easv to see tnat we a^so nave Kl/"l > <5}| > ^ for all

n.

In order to see the inductive step in our procedure, we will show that for any

given e > 0 and k > 1 there are integers n > k and TV > 1 so that if F = J27=n+i /»)

then |{|F| > 2e||F||x}| < 2e.

First, take n > k so that ]Ci^„+i £i < £- Next, since X is Q-concave, we may

choose N > 1 sufficiently large so that

\\rX[o,eiN)\\x<C-2(6e)l+1lp.

But notice that we then also have

f(e/N) <\\x[o,e/N)\\x1 -Wrxio^mWx

< C ■ N1/" ■ e-'lp ■ \\rx[o,s/N)\\x <C~l-6- (N6)^p ■ e.

Now set F = Y^=n+i f* and notice that since |{|/i| > 6}\ > 6 we have

\\F\\x>S[\Xlo,N6)\\x>C-1-6-(N6)1/p.
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Thus,

n + N

\{\F\>2e\\F\\x}\ =   ¿2   KIAI>2s||F|U}|
i=n+l

<   ¿   |{|ft|>e|lF||x}|+   ¿   |{|^|>£||F||x}|
i=n+l i=n+l

<N\{f>f'(e/N)}\+£
<2e.    M

COROLLARY 2.4. Let 1 < p < oo, 1 < q < oo, and let (/„) be a disjointly

supported norm-one sequence in LPiQ[0,oo). Then [fn] contains a complemented

copy of lq.

REMARK. It has been conjectured that Proposition 2.3 should actually hold

without the assumption that ||x[o,t]l|x > C_1i1//p for some p > 0. However, the

following example (suggested to us by W. B. Johnson) shows that some additional

assumption is, in fact, necessary. Let 1 < r < 2 and let X be the space Lr[0, oo) +

L2[0,oo) (then ||/||x ~ ||/*X[o.i]llr + ||/*X[i,«x>)||2)- Now fix r < s < 2 and let

(fn) be a disjointly supported sequence in X with f£(t) = i_1/s, 0 < t < 1, and

fn(t) = 0, t > 1, for all n. If Fn = Yl7=i /»> then a simple computation shows that

||F„||x <C-nl/s. But then F*(t) = n1/3^1/3 > C"1 -t'1/3 ■ \\Fn\\x for 0 < í < n.

That is, the conclusion of Proposition 2.3 cannot hold for the sequence (/«)■

THEOREM 2.5. Let 1 < p < oo, 1 < q < oo, and let X be a subspace

of Lp,q[0, oo). Then either X is isomorphic to a strongly embedded subspace of

LPiQ[0,1], or X contains a complemented copy of lq.

Consequently, if p > 2, then either X is isomorphic to /2 (and complemented),

or X contains a complemented copy of lq.

PROOF. If for some s < oo the restriction map / \—> /x[o,s] is ^^ isomorphism

on X, then we may suppose that X is actually a subspace of ¿p,g[0, s] and, hence,

apply a standard Kadec-Pelczyñski argument [9, Theorem 4.1 or 20, Proposition

I.e.8] to conclude that either X is strongly embedded in LPtq[0, s] (and thus also in

LPtq[0,1] by way of dilation), or that X contains an unconditional basic sequence

equivalent to a disjointly supported norm one sequence (/„) in Lpq[0,s]. Clearly,

£-0.
If, on the other hand, restriction to [0, s] fails to be an isomorphism on X for every

s < oo, then it is easy to find norm-one vectors (xn) in X and disjointly supported

norm-one vectors (/„) in Lp<q[0, oo) satisfying ||xn - /n||P,9 —* 0. Corollary 2.4 (and

a standard perturbation argument) now finishes the proof.    ■

REMARK. Up to this point we have stated all of our observations in the range

1 <p<oo, 1 <<?<oo, but only in order to take most immediate advantage of

several known results which are implicitly stated in this range. It is not hard to

see, though, that virtually all of these observations are actually valid in the entire

range 0 < p, q < oo (with only one obvious modification: we must avoid the word

"complemented" if p < 1).

In order to complete the proof of the result stated in the abstract we must con-

sider strongly embedded subspaces of LPt<j[0,1] for p < 2. Perhaps surprising is that
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the key step in our proof will be to show that lp does not embed in Lp^q [0, oo), p ^ q,

p t¿ 2. In order to do so we will first supply a new "disjointification" procedure

(which further underlines the natural role of J = [0, oo) in our arguments).

Given ft,...,fn € ^p,«[0il] we define the disjoint sum X3í=i©/» to be any

function / E Lp¡q[0, oo) with df = Ya=i ^/V For example, we could take

(6)

for 0 < t < n.

f(t) = ̂ 2fi(t-i + i)x[z~iMt)
i=l

PROPOSITION 2.6.   For 0 < p < oo, p ^ 1, and 0 < q <oo, there is a constant

C such that

(7)

(8)

£l/i
¿=i

<C

P,Q

E©/.
! = 1

<c
P,Q

£0/»
«=i

n

£ia

P,Q

i=l

for 0 < p < 1,

for 1 < p < oo,

for any ft,...,fn € Lp,,[0,1].

PROOF. For p > 1 and q > 1, (8) would follow from a version of [12, Lemma

7.1]; but more generally (8) follows from Kalton's "property (d)" [15], or from [20,

Proposition 2.a.8]. That is, for p > 1, Lp%q satisfies ||/||P)9 < C||ff||Pii whenever

/** < g** (recall that f**(t) = t_1 /0 f*(s)ds), and in our setting it is easy to

check that (£?=1 0/,)** < (£"., \fi\)^
In case 0 < p < 1 we prove (7) by interpolation. Fix n and define a quasi-linear

mapT : Lo[0,n] -» ¿0[0,1] by Tf = ¿2?=t l/ijs where /¿(i) = f(t + i-l), 0 < t < 1.
That is, if / is defined as in (6), then T(]T™=1 0 /,) = Yl7=i !/»!• ̂ n order to prove
(7) we need only show that T is bounded on Lr[0,n], 0 < r < 1 (independent of

n). But for r < 1,

v iA

\\Tf\\r = £l/<
t=l

¿=1

(n >

ÉWMIî=i      j

As a corollary, we get an improvement on a result from [4].

COROLLARY 2.7.   For 0 < p < oo, p ^ 2, and 0 < q < oo, there is a constant

C such that

(9)

(10)

£i/*i2

\¿=i

t®f<
i=i

1/2

<C

P,Q

<C

P,Q

1/2

¿=1

for 0 < p < 2,

P,Q

for any ft,...,fn E LPtQ[0,1].

£i/'i2

u=i    /

/or 2 < p < oo,

P,Q
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REMARK. It is shown in [4] that neither (7) nor (8) can hold when p = 1, q ^ 1

(i.e., neither (9) nor (10) can hold when p = 2, q ^ 2). But notice that Corollary

2.7 easily holds (by dilation, or by modifying (6)) for /i, ...,/„ e LPi<t[0, s], s < oo

(andp^¿2).

THEOREM 2.8. Let 0<p<q<oo,p^q,p^2. Then lp does not embed into

Lp,q[0, oo).

PROOF. By Theorem 2.5 we may suppose that p < 2. We will first consider the

case p < q. Suppose that (/¿) C ¿P,g[0, oo) is a normalized sequence if-equivalent to

the unit vector basis in lp (we may also suppose that each /¿ has compact support).

Next let (gi) be a disjointly supported sequence in -£/Piî[0, oo) with d9i = d¡i for all

i. Now the Maurey-Khinchine inequality [20, Theorem l.d.6] and Corollary 2.7(9)

yield

C-'K-1 £a¿/»

i=i

<

P,Q

£la¿/¿l
1/2

<i=l

<C

P,Q

£a«&

t=i P,Q

for any n and scalars (a¿). But since LPi(J satisfies an upper p-estimate, we would

then have

k-1 £k
\i=l

£o«/i

¿=i

<C'K

P,Q

£a¿ft
t=i P,Q

<C"K   ¿H'
i/p

\i=l

That is, (gi) would also be equivalent to the lp basis and, again, this is impossibly

by Corollary 2.4.
We now consider the case q < p. First notice that if X is a subspace of Lv<q [0, oo)

isomorphic to lp, then by Theorem 2.5 we must have that X strongly embeds

in LPiî[0,1]. But a strongly embedded subspace of LPA[0,1] would also embed

(strongly) in Lp¡r[0,1] for any p < r < oo, and this is impossible for X ~ lp by the

first part of the proof.     ■
REMARK. The proof of Theorem 2.8 shows that lp does not strongly embed in

Lp[0,1] for 0 < p < 2. For 1 < p < 2 this result is due to Rosenthal [25] (by a

very different method; see also [8]), and for 0 < p < 1 is implicit in Kalton's result

[14] that lp does not embed in Lp¡q[0,1] for 0 < p < 1, p < q < oo (but Kalton's

proof appears to require p < 1). Kalton has also shown that LPtOO[0,1] contains a

complemented copy of Lp[0,1] for 1 < p < 2 [16].

Finally we may complete the proof of our main result.

COROLLARY 2.9. Let 1 < p < oo, 1 < q < oo, and let X be a subspace

of LPtq[0,oo). Then either X is isomorphic to a strongly embedded subspace of

Lp[0,1], or X contains a complemented copy oflq.

PROOF. Of course we need only show that a strongly embedded subspace of

LP,Q[0,1] is actually strongly embedded in Lp[0,1].  This is obvious for q < p, so
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suppose X is strongly embedded in Lp<q[0,1], 1 < p < 2, p < q < oo. But then X

is strongly embedded in Lr[0,1] for every r < p, and by Theorem 2.8 we know that

lp does not embed in X. By a result due to Guerre and Levy [10], this implies that

X does, in fact, strongly embed in Lp[0,1].    ■
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