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ABSTRACT. B. H. Neumann's characterization of groups possessing a finite

covering by proper subgroups and Baer's characterization of groups with finite

coverings by abelian subgroups are refined to results about finite coverings by

normal subgroups. Various corollaries about the structure of groups having

such finite coverings are derived. Using the method employed for the main

theorem, a simplified proof of an earlier result of the third author concerning

finite coverings by word subgroups is given.

1. Introduction and results. A group is said to be covered by a collection

of subgroups if each element of the group belongs to at least one subgroup in the

collection. The collection is called a covering of the group [9, p. 105]. A covering is

called nontrivial if the collection consists of proper subgroups, and trivial otherwise.

In [8], B. H. Neumann gives the following characterization of groups having

nontrivial finite coverings:

THEOREM A. A group has a nontrivial finite covering by subgroups if and only

if it has a finite noncyclic quotient.

A characterization of central-by-finite groups in terms of coverings was given by

R. Baer as follows:

THEOREM B [8, 9]. A group is central-by-finite if and only if it has a finite

covering consisting of abelian subgroups.

The main topic of this paper is the characterization of groups which have non-

trivial finite coverings by normal subgroups and finite coverings by normal abelian

subgroups. Our results are as follows:

THEOREM l. A group has a nontrivial finite covering by normal subgroups if

and only if it has a quotient isomorphic to an elementary abelian p-group of rank

two for some prime p.

In [5], KontoroviC discussed the structure of finite groups with nontrivial normal

coverings.

We want to list several corollaries to Theorem 1. Using results from [1 or 2], we

obtain:

COROLLARY 1. A nilpotent group has a nontrivial finite covering by subgroups

if and only if it has a nontrivial finite covering by normal subgroups.

Following B. H. Neumann [8], we call a covering of a group irredundant if every

proper subsystem of the covering fails to cover the group. With this definition we

have:_
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COROLLARY 2. * All perfect normal subgroups of a group G are contained in

every member of an irredundant covering of G by proper normal subgroups.

The last corollary, an immediate consequence of the preceding one, shows that

the problem reduces to finite solvable groups.

COROLLARY 3. Let G = U™=i Ni, where Ni,... ,Nn form an irredundant cov-

ering of G by proper normal subgroups. Then G/D with D = D"=i ^i î5 finite and

solvable.

The next result extends Theorem B to finite coverings by abelian normal sub-

groups.

THEOREM 2. A group has a finite covering consisting of abelian normal sub-

groups if and only if it is a central-by-finite two-Engel group.

Previously, the third author of this paper considered coverings by verbal sub-

groups; see [4]. In the case of finite coverings of this kind, the following result was

obtained:

THEOREM 3 [4, THEOREM 2]. Every finite covering of a group consisting of

verbal subgroups is trivial.

The proof of this theorem presented here simplifies the original one by reducing

it to the case of finite groups. Also, it removes a gap which seems to appear at one

point in the first proof.

We want to mention that this result cannot be extended to finite coverings by

characteristic subgroups, since Heineken has constructed finite p-groups of class 2

in which every normal subgroup is characteristic; see [3].

As in the case of Theorems A and B, the following result, due to B. H. Neumann,

is essential for the proofs of our results.

THEOREM C [7, 4.4]. Let G = U"=i#»0i where Hu...,Hn are (not neces-

sarily distinct) subgroups ofG. Then if we omit from the union any coset HiÇi for

which [G : Hi] is infinite, the union of the remaining cosets is still all of G.

2. Three preparatory lemmas.

LEMMA 1. Let G = H x M where H is a nonabelian simple group. If N <G

then N = H x S or N = 1 x S where S < M.

PROOF. Since H,N < G, we have [H,N] Ç H (IN Ç N. Now H simple and
[H,N] < H imply [H,N] = H or [H, N] = 1. Consider 5 = {m € M; 3 h e
H, (h,m) € AT}. Obviously S is a subgroup of M and N Ç H x S.

Let (h, m) e H x 5. Then there exist k,k' G H such that (k,m) e A^ and

kk' = h. If [H, N] = H, then H C N, so (fc', 1) e N and {h, m) e N. Therefore

N = H x S in this case. Thus S <M since 5 is a subgroup of M and normal in G.

Now, if [H,N] = 1, then (k,n) € A^ commutes with all (h, 1) € H. Thus

k e Z(H). Since H is nonabelian and simple, we get k = 1 and N Ç M. So

N = 1 x S and S < M.    D
A group G is called a PNS-group if every nontrivial proper normal subgroup has

a proper normal supplement. Every simple group is a PNS-group in a trivial way.

'We want to thank the referee for suggesting Corollaries 2 and 3.
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The property of being a PNS-group is not inherited to homomorphic images as

can be seen from the following example: Let G = \\ Cp be the unrestricted direct

product over all cyclic groups Cp where p ranges over all primes p. Then G is a

PNS-group. Let T be its torsion subgroup. The quotient group G/T is a torsion

free divisible group which is not a PNS-group. However we have:

LEMMA 2.   Every direct factor of a PNS-group is a PNS-group.

PROOF. Let G = L x M be a PNS-group, and let if be a nontrivial proper

normal subgroup of M. Then K<G and K ^ G. Thus there exists H<G, H / G,

such that KH = G. Then K(H C) M)=GnM = M and HnM^M since

otherwise K Ç H, a contradiction. Hence M is a PNS-group.    D

For finite groups we have:

LEMMA 3. A finite group G is a PNS-group if and only if G is the direct product

of simple groups.

PROOF. First let G be a finite PNS-group such that every PNS-group of smaller

order is the direct product of simple groups. Without loss of generality we can

assume that G is not simple. Let if be a minimal normal subgroup of G. Since G

is a PNS-group there exists a proper normal subgroup M of G such that G = HM.

The minimality of H implies HC\M = 1. Thus G = H x M, and we conclude that

H is simple.

Now M is a direct factor of G and of smaller order. Thus, by Lemma 2, M is a

PNS-group. It follows by our hypothesis that M = Mi x ■ • • x Mk with M¿ simple.

We conclude that G itself is the direct product of simple groups.

Conversely, assume that G is the direct product of simple groups. If G is abelian,

it can be seen easily that G is a PNS-group, since G is the direct product of

elementary abelian p-groups. Without loss of generality we can assume that G is

not abelian. We prove our claim by induction on the number of simple direct factors

of G. Let G = H x M where H is simple of composite order. Consider N <G with

1 t¿ N t¿ G. We can assume N ^ M,H. Then, by Lemma 1, there exists S < M

with N = H x S and S ¿ M, or N = 1 x S and 1 ^ S. Now M is the direct

product of a smaller number of simple groups than G, hence a PNS-group by our

induction hypothesis. Thus there exists T < M, 1 ^ T ^ M, with M = ST, and

G = A(l x T) or G = N{H x T) respectively. Hence G itself is a PNS-group.    D

3. Proof of the theorems and corollaries.

PROOF OF THEOREM 1. First assume G/N S Cp x Cp for some N <G.

Since Cp x Cp has a finite nontrivial covering by normal subgroups, it follows by

correspondence that G has such a cover.

Conversely, assume that G = U¿=i ^»i with each Ni a proper normal subgroup

of G. Let N — Ht=i -W»- We may assume that N^,.. .,Nk cover G irredundantly

and thus by Theorem C [G : N,] < oo. Hence G/N is finite and G/N = \J*=1 Ni/N,

with each Ni/N a proper normal subgroup of G/N. If G/N has a quotient iso-

morphic to Cp x Cp, so does G. Hence it suffices to show the implication if G is

finite.

Suppose that G is a finite group of minimal order with G = UÍLi W»> w^tn eacn

Wi a proper normal subgroup of G, but G has no quotient isomorphic to Cp x Cp

for any prime p.  To show G is a PNS-group, let K < G and 1 ^ K ^ G.  Then
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G/K = Ur=i WiK/K. Since G was of minimal order it follows that this covering

of G/K is trivial. Without loss of generality we can assume that G = W\K. Hence

W\ is a proper normal supplement of K. Thus G is the direct product of simple

groups by Lemma 3. If G is abelian we conclude that G is a cyclic group of square-

free order. In this case G has no nontrivial finite covering. Thus we can assume

that G = H x M where H is simple of composite order.

Since |M| < |G|, there exists m € M such that m £ % = \JSi, where the Si

range over all proper normal subgroups of M. Consider (h, m) € G with 1 ^ h G H.

Since G has a nontrivial covering by normal subgroups, there exists a proper normal

subgroup A of G and (h, m) € N. We can apply Lemma 1 and obtain JV=lxS

or N = H x S with S < M. Since h ¿ 1, ft follows that N = H x S. But m £ ^

and m & S imply S = M. Hence N = G, a contradiction.    D

PROOF OF COROLLARY l. By Theorem 2.6 of [1], if G is nilpotent, then G

has a finite noncyclic image if and only if G/G' has a finite noncyclic image. By

Theorem A, it follows that G admits a finite, nontrivial covering if and only if G/G'

does. But every covering of G/G' is a normal covering, and, by correspondence,

gives rise to a normal covering of G.    D

PROOF OF COROLLARY 2. Let M be a perfect normal subgroup of G. For

Mx = (x,M), x € G, we observe that Mx/M is cyclic. Hence M' Ç M'x Ç M.

Thus M'x = M, since M = M'. By Theorem 1, it follows that Mx has only trivial

finite coverings by normal subgroups.

Let G = U"=i ^«' where Ni1,... ,Nn are proper normal subgroups of G, covering

G irredundantly. Any (normal) covering of G induces a (normal) covering of a

subgroup of G by forming intersections of the subgroup with the members of the

covering. By the preceding argument, it follows that Mx has only trivial coverings

by normal subgroups. Thus Mx is equal to at least one member in the induced

covering Mx = \J*=1{MX D Ni), or Mx — Mx n Nk for at least one k, and hence

M Ç Afc. Suppose there exists an A, in the covering of G such that Nj does

not contain M. Then for any x € G, M Ç Mx Ç Nk where k ^ j. Hence

G = UzgG-^z - Ui^j-^i- This is a contradiction, since Ai,...,An formed an

irredundant covering of G.    D

PROOF OF COROLLARY 3. Theorem C implies that H = G/D is finite. There-

fore the derived series of H becomes stationary after a finite number of steps, i.e.

fjW — f{(k+1) for some integer k > Í. Hence H^ is a perfect normal subgroup

of H. We observe that H = \J"m Ni/D, where NJD,.. .,Nn/D form an irre-

dundant covering of H by proper normal subgroups. By Corollary 2, it follows

that #<fc) C iXi Ni/D. But f|fei N/D = 1, hence H™ = 1 and H = G/D is
solvable.    D

PROOF OF THEOREM 2. Assume first that G = U"=1 Wt> with Ni<G and A¿

abelian. Theorem B implies that G/Z(G) is finite. If h € G, then h G Ni for some

í. Further, A¿ < G implies [g, /i] e A¿ for ail g e G. Since A¿ is abelian, it follows

that [g, h, h] = 1. So G is a 2-Engel group.

Now we assume that G/Z(G) is finite and G is 2-Engel. Then (ga) is abelian

by [6], and (gG)Z(G) is an abelian normal subgroup of G. Choose a transversal

T = {0i, • • •, £„} of Z(G) in G. Then G = jj^, (gf)Z{G), since each g € G can be
written as giZ for some z G Z(G) and some gi € T. So G has a covering by finitely

many abelian normal subgroups.    D
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The verbal subgroup W(G) of a group G corresponding to a set of words W is

the subgroup generated by all values in G of the words in W. Without proof we

state the following facts about verbal subgroups which will be used in the proof of

Theorem 3 without further reference:

(i) W{GT) = W(GY for every homomorphism t of G;

(ii) W{A xB) = W{A) x W(B).
PROOF OF THEOREM 3. Assume the theorem is false. First we show that

there exists a finite group for which our claim is not true. Let G be an infinite

group having a nontrivial finite covering by verbal subgroups, i.e. G = \Ji=\ ^¡{G)

with Wi(G) properly contained in G for each 1 < i < m. By Theorem C, we can

assume [G : W¡(G)\ < oo for all i. Let N = ("£, W¡{G). Then G/N is finite

and G/N = U™ i ^i(G/N), i.e. G/N has a finite covering by verbal subgroups.

Suppose that this covering is trivial. We may assume without loss of generality that

Wi{G/N) = G/N. Since N Q Wi{G), we have W1{G)/N = G/N, so G = W[{G),
contradicting our assumption that we had a nontrivial covering of G. Thus, if our

theorem fails to be true, there exists a finite group G/N which has a nontrivial

covering by verbal subgroups.

Let H be such a group of minimal order having the property that

n

H = (J Wi(H),
i=\

where W\(H),... ,Wn(H) are proper verbal subgroups of H. To show that H is a

PNS-group, we consider K <H with 1 ^ K ^ H. Then the resulting covering of

H/K by the verbal subgroups Wl(H/K), i = 1,...,n, is trivial since \H/K\ < \H\.
It follows that H — K ■ Wi(H) for some i, hence W¡(H) is the proper normal

supplement of K in H. Thus, by Lemma 3, H = Hi x • • • x Hk with Ht simple,

for i = 1,..., k. For any verbal subgroup W(H) of H we have W(H) = W(HX) x

• • • x W(Hk). The simplicity of each H% implies that W(H) is a proper verbal

subgroup of H if and only if W(Hi) = 1 for at least one i/¿. This implies that

any h £ H with nonidentity components for each i is contained in no proper verbal

subgroup of H, contradicting our assumption that H had a nontrivial covering by

verbal subgroups. Hence no finite group, and therefore no group, has a nontrivial

covering by verbal subgroups.    D
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