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ABSTRACT. We give a necessary and sufficient condition for the Gauss map
of an immersed surface M in n-space to arise simultaneously as the Gauss
map of an anti-conformal immersion of M into the same space. The condition
requires that the lines of curvature of each normal section lie on the zero set
of a harmonic function. The result is applied to a class of surfaces studied
by S. S. Chern which admit an isometric deformation preserving the principal
curvatures.

1. Introduction. The classical Gauss map of a surface in R3 assigns to a point
the unit normal vector to the surface. For a surface in R the Gauss map assigns
to a point the tangent plane which may be identified with a point in a quadric
QN -2 cC PN -1

In recent years several papers have discussed the determination of a surface by
its Gauss map. The results of K. Kenmotsu [6] show that a smooth map from a
Riemann surface R to the 2-sphere, satisfying an integrability condition, factors
through a conformal immersion

(1.1) X:R— M?CR?

as the Gauss map. Kenmotsu’s integrability condition explicitly involves the con-
formal structure of R and a real valued function & which is to be the mean curvature
of M.

In [3] Hoffman and Osserman give conditions on a map

(1.2) ¢:R—QN?

involving only the complex structure of R, which are necessary and sufficient for
the map to arise as the Gauss map of a conformal immersion

(1.3) X:R - RV,

Their results essentially imply that a conformal immersion of a Riemann surface
R into RY is determined by its Gauss map, provided the mean curvature is not
identically zero at some point.

Since a single map as in (1.2) determining multiple conformal immersions is in
general excluded, a natural question to consider is when such a map arises simulta-
neously as the Gauss map of both a conformal and anti-conformal immersion. This
question turns out to have a simple geometric answer which requires the following
definition:

DEFINITION. A surface M C RY is isothermic if, locally, there exist a pair of
harmonic functions u;, us such that the lines of curvature of each smooth section of
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the normal bundle are contained in a level set u; = const. This is a generalization
of a classical definition which can be found in [2].

THEOREM 1. Let
(1.4) g:R—- QN2
be the Gauss map of a conformal immersion of an orientable surface M :
(1.5) X:R— McCRV.
Then there exists an anti-conformal immersion
(1.6) X:R— McCRV
such that the following diagram commutes
g, QN-2

f{\, /" Gauss Map

M

if and only if M 1s isothermic. The surface M is unique (modulo similarity trans-
formations of RY ) provided M is not totally umbilic.

There are abundant examples of isothermic surfaces. We list a few.

(1) Constant mean curvature surfaces in R3.

(2) Surfaces of revolution in R3.

(3) Constant mean curvature surfaces M2 C S3 c R4.
In addition, we note the following properties of isothermic surfaces which when
combined with the above furnish more examples:

(1) f(M) is isothermic if M is isothermic and f:RN — R¥ is conformal.

(2) If X: R — M C RV is isothermic then

XoX® - ®©X:M— RNk
*

is isothermic.

In part 4 we apply the main result to a class of surfaces studied by S. S. Chern
in [1]. These are surfaces of nonzero mean curvature which admit a nontrivial
isometric deformation preserving the principal curvatures. We show first that these
surfaces are isothermic and second that the surface M described above has the
property that is mean curvature is the reciprocal of a harmonic function.

2. Preliminaries. Let R be a simply connected Riemann surface and
(2.1) X:R—-McCR3

a smooth, conformal immersion. We assume M is orientable. After choosing a
complex coordinate z = u; +iuy on R, the metric induced by (2.1) has an expression

(2.2) ds?, = e?|dz|?

for a smooth function p = p(z) on R. Locally on M we may choose an orthonormal
frame {€"},=3,.. ~ for the normal bundle N(M). Differentiating £" defines

(2.3) d¢" = —A, (") + V(€
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The terms on the right-hand side are respectively the tangential and normal com-
ponents of d¢”. At each point of M, —A, is a selfadjoint endomorphism of the
tangent plane. Its eigenvalues ﬁ]' ; 7 = 1,2 are the principal curvatures of £". The
corresponding eigenvectors are the principal directions and their integral curves are
the lines of curvature. These curves exist away from the £" umbilics which are
those points of M where 8] = f5.

The second fundamental forms are defined by

(2.4) I(X,Y) =ds}(X,4,(Y)), XY eT,M.
The trace of II" is twice the rth mean curvature
(2.5) R = 3(6] + B3).

On R, II" has an expression

ol e’
(2.6) II" =2Re (7dz ®dz + h'?dz ® dE).
The quantities
(2.7) ¢ =¢"dz@dz
define invariant quadratic differentials on M. Under change of complex coordinate
le
2.9 = = =
(2.9) a=al), =0
q" transforms according to
r T 7 dz 2
(2.10) ¢  =¢d'd2®dz=¢ T dz; ® dz;
1
that is
dz \?
2.11 T=¢"l—) .
@11) h=0 <d21)

The zeros of g are precisely the £ umbilics. See [5] for details.
The quantities defined above appear as coefficients of the structural equations
for the immersion

Xez = szz + % Er ¢r€r’
(2.12) Xz=%Y, h¢,
=-h"X,—¢"ePXz+ 3, St

(and their conjugates) where S} are defined by

N
(2.13) Ve =) Stet.

t=3

The well-known integrability conditions of (2.12) are the Gauss equation

(2.19) Pz = %Z(qﬁ'%-ﬂ — (h7)2eP),
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the Codazzi equations
(2.16) @)z +D_ 8" (ST) =€’ (h"): + ) _ ePh'S]
t t
and the Ricci equations
e—p —_— N —_—
(2.17) Im {(S,‘ T 50+ > sis,t} =0, 3<rt<N.
1=3

We define the Gauss map of
(2.18) X:R— McCRV
following [2]. Consider the quadratic
QN2 ={[s]eCP"|¢-¢ =0}
Here [ | denotes equivalence class. Since X is conformal, one has
(2.19) X, X,=0
and we define the Gauss map

g: M — QN2
p— [Xz]y
where p is a point on M with coordinate z. We will also use g to denote this map

pulled back to R via X. Many details and interesting properties of g may be found
in [3 and 4].

(2.20)

3. Main result. The proposition below gives simple coordinate-dependent
criteria for a surface to be isothermic.

PROPOSITION 3.1. M 1s isothermic if and only if locally there exists an isother-
mal parameter z = u + tugy with

(38.1) Im¢"(2)=0, r=3,...,N.
PROOF. Assume (3.1) holds and write
(3.2) "= > Ljdu; ®du;.
1,7=1,2

An easy computation shows

(3.3) o = # il
so that (3.2) implies
(3.4) II" = L7,du; ® duy + Liydus ® dug

and the lines of curvature are the coordinate curves.

On the other hand suppose u;,us are harmonic functions such that the lines of
curvature are contained in a level set {u; = const.}. Since the lines of curvature
intersect orthogonally, u; and us are harmonic conjugates. Define

(35) 21 = U + 1:‘U,2,
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the sign chosen so that z; = 2;(z) is holomorphic. The lines of curvature are the
solutions of

(3.6) Im¢Tdz2 =0

(see [5] for details). Since Vu, (resp. Vug) is tangent to the level curves us = const.
(resp. u; = const.), (3.6) implies

3.7 Im ¢"dz ® dz(Vu;, Vu;) = 0.
Using
(3.8) Vu,; =27 (u;zX; + u;, Xz), j=12
this gives
(3.9) Im¢(uz)? =0, j=1,2
The Cauchy-Riemann equations applied to u;,ug give
(3.10) Uz = —lugz
and we find
0=Im¢" - (ul; — ul; + 2u%;)
=Im¢"- (ufg - u%; F 2iuizugz)
=Im¢" - (urz F tugz)’
a7\ 2
e (%)
2 2
Therefore
dz \?

(3.11) Im¢" <EZ) =0

and by Proposition (3.1) the coordinate u; * tuy is as required.
PROOF OF THEOREM I. Let

(3.12) ¢:R—QV2ccpV!
represent the Gauss map of
(3.13) X:R— MCRV.

The existence of X is equivalent to the existence of a smooth C-valued function f
on R such that

(3.14) X, =Xz
ie.,
(3.15) [Xs] = [X.] € QN2

The differential equation (3.14) for X will be integrable provided
(3.16) Im(d,¢ X,) = 0.
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Using (2.12) this becomes
1
0=Im {ef(fz +p)X, + ¢l Z,: §¢'£'}
S 1
= a f S AT eT
Im{(fz+Pz)Xz+e 22‘» £ }

Note that the structural equations (2.12) applied to the immersion X imply

(3.17) fe+p:=0
S0 we can write

(3.18) f=3-»
with gz = 0. (g is holomorphic.) This gives for all r,
(3.19) Ime?g™ = 0.
Define a new isothermal coordinate

(3.20) z2 = / ’ e9/%de¢.
Then the transformation rule (2.11) for ¢" gives
(3.21) ¢ = %"
and so (3.19) implies

(3.22) Img¢] =0

and M is isothermic.
Conversely if Im ¢” = 0 for all » then define

~

(3.23) Xz=e*X,

and one easily checks using (2.12) that
(3.24) Imd,(e”*X,) =Im (e—p(l/2) > ¢'§') =0.
T

For the uniqueness of M, note that by (4] Theorem 2.3 the Gauss map of M,
(325) §=[Xz] = [¢/ X.]

determines the immersion X (mod similarities) provided Xz, # 0. However,

Xz, =ef((fz+¢z)Xz+Z%€').

The right-hand side cannot vanish identically unless ¢" =0, r = 3,..., N, which is
the totally umbilic case.
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4. Application to a class of surfaces. In [1] S. S. Chern classified the umbilic
free surfaces M C R3 which admit a nontrivial isometric deformation preserving
the principal curvatures. Besides the classical examples of constant mean curvature
surfaces, Chern found a second class of Weingarten surfaces with the property that
the conformal metric

ds? = ||Vh|?(h? - K)"dsi,
has constant Gaussian curvature K = —1. We will show these surfaces are isother-
mic and show the surfaces M obtained by Theorem I have an interesting property.

THEOREM II. Let M be an umbilic free, nonminimal, surface in R® admitting
a nontrivial isometric deformation preserving the principal curvatures. Then

(i) M is isothermic;

(ii) If M s the surface obtained via Theorem 1, the mean curvature h of M
satisfies

(1 - -
(4.1) A(Z) =0 (A s the Laplace-Beltrami operator on M).

_ REMARK. If h = const. on M then the above result is well known. The surface
M also has constant mean curvature so (4.1) holds trivially.

Following [1], introduce an orthonormal moving frame {e;, ez, e3} along M with
e1, €z the principal directions and e the unit normal. Let w; be the dual one forms
and as usual define w;; by
(4.2) dw; = wij Awj.

By choice of frame we have:
(4.3) W13 = awp, W3 = Cwa

where a > ¢ are the principal curvatures. Next introduce the one form

2dh

(4.4) 01 = Py

Let a; be the symmetry of #; with respect to the principal directions:

(4.5) a; =46 —Z(G_Ceg(h)>w2.
Let * denote the Hodge star operator
(4.6) *wy = wa, *we = —wy
and define
4.1 0y = "0y, ag = *ai.
The Codazzi equations on M can be used to show (see [1])
(4.9) dlog(a —¢) = a1 + 2*wi2.
In addition we note the important formulas
(4.10) () doy =0,

(b) dag A asg,

which gives K = —1 in the case h # const .




ISOTHERMIC SURFACES AND THE GAUSS MAP 883

PROOF OF THEOREM III. We first show M is isothermic. By (4.9) and (4.10a)
we have

(4.12) d*wm =0.

Locally we can define a function p by

(413) *wlg = ——dp
2
Define
(4.14) du; = e=?%w;, Jj=12

Then (4.13) together with the structural equations (4.2) imply ddu; = 0. The coor-
dinates u;, u2 have the necessary property of Proposition 3.1 and M is isothermic.

We assume by the remark that h # const . Using (3.23) we compute fundamental
quantities on M denoted with “tilde”,

~l = ) g = — )
(i) @1 = e Pwy Wo e Puwy
(4.15) (ii) @ = efa, ¢ = —¢€’c,

’ = a—c

—ef
(iii) h=e ( 5 )

The Hodge star operator of M gives
(4.16) o1 =0, hg=-i
which gives using (4.15(i))
(4.17) fwr = —ws, *wg = wy.

By (4.15(iii)), equation (4.1) is equivalent to
0=d*d(e "(a—c)™}).
Compute

d*d(e™?(a—c)™!) = —d*e¢™?[(a — ¢)"*dp — (a — ¢) " 'dlog(a — c)]
=-d*¢*((a—c)"'dp—(a —c) (a1 —dp)] (by (4.9), (4.13))
=dePla—c) oy

—de ?(a—c) lag (by (4.5), (4.18))

=e?l(a—c) 'dpAaz+(a—c)"d

-log(a —c) Az + (a — ¢) " 'das)
(by (4.9), (4.10b))

=ePlla—c) 'dpAaz+(a—c)"d
(a1 —dp) Aoz — (a—c) la; Aag)
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