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ABSTRACT. We give a necessary and sufficient condition for the Gauss map

of an immersed surface M in n-space to arise simultaneously as the Gauss

map of an anti-conformal immersion of M into the same space. The condition

requires that the lines of curvature of each normal section lie on the zero set

of a harmonic function. The result is applied to a class of surfaces studied

by S. S. Chern which admit an isometric deformation preserving the principal

curvatures.

1. Introduction. The classical Gauss map of a surface in R3 assigns to a point

the unit normal vector to the surface. For a surface in RN the Gauss map assigns

to a point the tangent plane which may be identified with a point in a quadric
QN-2cCpN-l

In recent years several papers have discussed the determination of a surface by

its Gauss map. The results of K. Kenmotsu [6] show that a smooth map from a

Riemann surface 72 to the 2-sphere, satisfying an integrability condition, factors

through a conformai immersion

(1.1) X:72-M2cR3

as the Gauss map. Kenmotsu's integrability condition explicitly involves the con-

formal structure of 72 and a real valued function h which is to be the mean curvature

of M.
In [3] Hoffman and Osserman give conditions on a map

(1.2) g:R-^QN-2

involving only the complex structure of 72, which are necessary and sufficient for

the map to arise as the Gauss map of a conformai immersion

(1.3) X:R^RN.

Their results essentially imply that a conformai immersion of a Riemann surface

72 into RN is determined by its Gauss map, provided the mean curvature is not

identically zero at some point.

Since a single map as in (1.2) determining multiple conformai immersions is in

general excluded, a natural question to consider is when such a map arises simulta-

neously as the Gauss map of both a conformai and anti-conformal immersion. This

question turns out to have a simple geometric answer which requires the following

definition:

DEFINITION. A surface M C R^ is isothermic if, locally, there exist a pair of

harmonic functions ui,u2 such that the lines of curvature of each smooth section of
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the normal bundle are contained in a level set Uj — const. This is a generalization

of a classical definition which can be found in [2].

THEOREM I.   Let

(1.4) g:R^QN~2

be the Gauss map of a conformai immersion of an orientable surface M :

(1.5) X:72 —MCRN.

Then there exists an anti-conformal immersion

(1.6) AT: 72 — McRN

such that the following diagram commutes

R     -2->     QN~2

X\     /"Gauss Map

M

if and only if M is isothermic.  The surface M is unique (modulo similarity trans-

formations ofRN) provided M is not totally umbilic.

There are abundant examples of isothermic surfaces. We list a few.

(1) Constant mean curvature surfaces in R3.

(2) Surfaces of revolution in R3.

(3) Constant mean curvature surfaces M2 C S3 C R4.

In addition, we note the following properties of isothermic surfaces which when

combined with the above furnish more examples:

(1) f(M) is isothermic if M is isothermic and f:RN —► RN is conformai.

(2) If X: 72 -» M c RN is isothermic then

X®X®---®X:M^ RNk

k

is isothermic.

In part 4 we apply the main result to a class of surfaces studied by S. S. Chern

in [1]. These are surfaces of nonzero mean curvature which admit a nontrivial

isometric deformation preserving the principal curvatures. We show first that these

surfaces are isothermic and second that the surface M described above has the

property that is mean curvature is the reciprocal of a harmonic function.

2. Preliminaries. Let 72 be a simply connected Riemann surface and

(2.1) X:72 — McR3

a smooth, conformai immersion.   We assume M is orientable.   After choosing a

complex coordinate z = ui+iu2 on 72, the metric induced by (2.1) has an expression

(2.2) ds2M = e'|dz|2

for a smooth function p — p(z) on 72. Locally on M we may choose an orthonormal

frame {tr}r=z,...,N for the normal bundle N(M). Differentiating £r defines

(2.3) de = _Ar{.) + v±]e_
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The terms on the right-hand side are respectively the tangential and normal com-

ponents of dtr ■ At each point of M, —Ar is a selfadjoint endomorphism of the

tangent plane. Its eigenvalues ßr-\ j = 1,2 are the principal curvatures of £r. The

corresponding eigenvectors are the principal directions and their integral curves are

the lines of curvature. These curves exist away from the tr umbilics which are

those points of M where ß\ = ß2.

The second fundamental forms are defined by

(2.4) n;(X,Y) = ds2M(X,Ar(Y)),        X,YGTPM.

The trace of IF is twice the rth mean curvature

(2-5) hr = \(ß[+ßr2).

On 72, W has an expression

/ ér ep \
(2.6) IIr = 2Rel ^-dz®dz + hr—dz®dz\.

The quantities

(2.7) qr = <f>rdz ® dz

define invariant quadratic differentials on M. Under change of complex coordinate

(2.9) zi=zi(z), ¿|"=0'

qT transforms according to

( dz\2
(2.10) <f = qfdz ® dz = <pr   -r—     dzi ® dzi,

\dzi)

that is

(2.11) <Pf'&

The zeros of qr are precisely the tr umbilics. See [5] for details.

The quantities defined above appear as coefficients of the structural equations

for the immersion

(2.12)

{ Xzz = pzXz + \\Zr<PTc7,

Xzz = y ¿Zr hrtr,

{ trz = ~hrXz - <Pre-"Xz + Et Sít*,

(and their conjugates) where S1' are defined by

(2.13) VÏC = EStrtt-
t=3

The well-known integrability conditions of (2.12) are the Gauss equation

(2.14) te=JE(^e"'-(hr)V)-
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the Codazzi equations

(2.16) (0r)ï + 5>*v3n =e»(hr)z + YjePhtS¡
t t

and the Ricci equations

f -p N       — 1
(2.17) hal(S*)j-^-4>r<l>t + J2SrSt\=^        3<r,i<7V.

We define the Gauss map of

(2.18) X:R^McRN

following [2]. Consider the quadratic

QN-2 = {[ç]GCPN-1\ç-c = 0}.

Here [ ] denotes equivalence class. Since X is conformai, one has

(2.19) Xz ■ Xz = 0

and we define the Gauss map

a- M —> On~2(mo> 'A4 •
where p is a point on M with coordinate z. We will also use g to denote this map

pulled back to 72 via X. Many details and interesting properties of g may be found

in [3 and 4].

3. Main result. The proposition below gives simple coordinate-dependent

criteria for a surface to be isothermic.

PROPOSITION 3.1. M is isothermic if and only if locally there exists an isother-

mal parameter z — u + iu2 with

(3.1) lmcpr(z) = 0,    r=3,"...,7V.

PROOF. Assume (3.1) holds and write

(3.2) nr =   J2   LljduiŒdUj.
«,¿=1,2

An easy computation shows

r r
(3.3) 4>r =-iLi2

so that (3.2) implies

(3.4) IT = L\xdui ® dui + L\2du2 <S> du2

and the lines of curvature are the coordinate curves.

On the other hand suppose ui,u2 are harmonic functions such that the lines of

curvature are contained in a level set {uj = const.}. Since the lines of curvature

intersect orthogonally, ui and u2 are harmonic conjugates. Define

(3.5) Zi — ui ±iu2,
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the sign chosen so that zi = zi(z) is holomorphic. The lines of curvature are the

solutions of

(3.6) lm(prdz2=0

(see [5] for details). Since Vui (resp. Vu2) is tangent to the level curves u2 — const,

(resp. ui — const.), (3.6) implies

(3.7) Im<prdz <g> dz(Vu-j, Vu,) = 0.

Using

(3.8) Vu, = 2e-p(ujzXz + ujzXz),       j = 1,2,

this gives

(3.9) lm<^)2 = 0,        i =1,2.

The Cauchy-Riemann equations applied to ui,u2 give

(3.10) urz = -iu2z

and we find

0 = lm<pr-(u21-u221±2u2z)

= lm<pr ■ (u\z - u\z T 2iuizu2z)

= lm<pr ■ (uiz+-iu2z)2

T      j.rfdZl\
= lm<p

= Im^;
\dz~i)

dzi

dz

Therefore

/ dz \2
(«H Mr(±) =o

and by Proposition (3.1) the coordinate ui ± iu2 is as required.

Proof of Theorem I. Let

(3.12) g:R^QN~2 CCPN~1

represent the Gauss map of

(3.13) X.R-+M CRN.

The existence of X is equivalent to the existence of a smooth C-valued function /

on 72 such that

(3.14) ¿X, w Xz

i.e.,

(3.15) [XZ] = [XZ]GQN-2.

The differential equation (3.14) for X will be integrable provided

(3.16) \m(dzefXz) = 0.
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Using (2.12) this becomes

0 = Im h(fz + pz)Xz +efJ2 \<t>T? }

= lmí(fz + pz)Xz + e'¿2\<l>rn-

Note that the structural equations (2.12) applied to the immersion X imply

(3.17) fz + pz=0

so we can write

(3.18) f = g-P

with gz=0. (g is holomorphic.) This gives for all r,

(3.19) ImeV=0.

Define a new isothermal coordinate

(3.20) /z e9'2dt-

Then the transformation rule (2.11) for <pr gives

(3.21) <p\ = e~g<pr

and so (3.19) implies

(3.22) lm<#¡=0

and M is isothermic.

Conversely if Im <f>r = 0 for all r then define

(3.23) Xz = e-"Xz

and one easily checks using (2.12) that

(3.24) lmdz(e-pXz) = Im^^1/2' ^^r) = 0-

For the uniqueness of M, note that by [4] Theorem 2.3 the Gauss map of M,

(3.25) g = [Xz] = [e*Xz\

determines the immersion X (mod similarities) provided Xzz ^ 0. However,

Xzz = ¿((fz + cPz)Xz + ]T Ç f) •

The right-hand side cannot vanish identically unless <pr = 0, r — 3,..., N, which is

the totally umbilic case.
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4. Application to a class of surfaces. In [1] S. S. Chern classified the umbilic

free surfaces M C R3 which admit a nontrivial isometric deformation preserving

the principal curvatures. Besides the classical examples of constant mean curvature

surfaces, Chern found a second class of Weingarten surfaces with the property that

the conformai metric

ds2 = \\Vh\\2(h2-K)-1ds2M

has constant Gaussian curvature K = — 1. We will show these surfaces are isother-

mic and show the surfaces M obtained by Theorem I have an interesting property.

THEOREM II. Let M be an umbilic free, nonminimal, surface in R3 admitting

a nontrivial isometric deformation preserving the principal curvatures.  Then

(i) M is isothermic;

(ii) If M is the surface obtained via Theorem I, the mean curvature h of M

satisfies

(4.1) AI — J = 0    (A is the Laplace-Beltrami operator on M).

REMARK. If h = const, on M then the above result is well known. The surface

M also has constant mean curvature so (4.1) holds trivially.

Following [1], introduce an orthonormal moving frame {ei,e2,ez} along M with

ei,e2 the principal directions and e?, the unit normal. Let Uj be the dual one forms

and as usual define wy by

(4.2) &4 = w1/Awi.

By choice of frame we have:

(4.3) Wi3 = aui,    oj23 = coj2

where a > c are the principal curvatures. Next introduce the one form

i a a\ a        'Idh
(4.4) 0i =- a- c

Let ai be the symmetry of 0i with respect to the principal directions:

(4.5) ai=9i-2(—e2(h))uj2.
\a-c       ')

Let * denote the Hodge star operator

(4.6) *wi = (¿2,        *oj2 = — toi

and define

(4.7) 02 =   *01, C*2 =   *Ol.

The Codazzi equations on M can be used to show (see [1])

(4.9) dlog(a - c) = aj+2*wi2.

In addition we note the important formulas

(41°) ¡8   í"1:0,(b)        dtv2Acv2,

which gives K = — 1 in the case h ^ const.
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PROOF OF THEOREM III. We first show M is isothermic. By (4.9) and (4.10a)

we have

(4.12) d*ujï2 = 0.

dp

Locally we can define a function p by

(4.13) *wi2

Define

2

(4.14) duj = e-p/2(jjj,        j = l,2.

Then (4.13) together with the structural equations (4.2) imply dduj = 0. The coor-

dinates ui,u2 have the necessary property of Proposition 3.1 and M is isothermic.

We assume by the remark that h ^ const. Using (3.23) we compute fundamental

quantities on M denoted with "tilde",

(i) ¿¡i = e~pui,        Cb2 = -e~poj2,

(4 15) (ü) à = epa, c = -epc,

(in)h = ep{^).

The Hodge star operator of M gives

(4.16) *wi = w2,        *Q2 — -ù>i

which gives using (4.15(i))

(4.17) *wi = — u>2, *uj2 = uji.

By (4.15(iii)), equation (4.1) is equivalent to

0 = did(e-"(a-c)'1).

Compute

d*d(e~p(a - c)'1) = -d*e-p[(a - c)-xdp - (a - c)_1dlog(a - c)}

= -d*e-p[(a - c)~ldp - (a - c)~1(ax - dp)]    (by (4.9), (4.13))

= die-p(a-c)-1ai

= -de~p(a - c)_1a2    (by (4.5), (4.18))

= e~p\(a - c)~1dp Aa2 + (a- c)~1d

■ log(a — c) A a2 + (a — c)-1dc*2]

(by (4.9), (4.10b))

= e~p[(a - c)'1dp Aa2 + (a- c)~1d

■ (ai — dp) Aa2 - (a — c)-1ai A 0:2]

= 0.
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