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MIXED-NORM GENERALIZATIONS
OF BERGMAN SPACES AND DUALITY

STEVE GADBOIS

(Communicated by Irwin Kra)

ABSTRACT. Conditions sufficient for boundedness of the Bergman projection

on certain "mixed-norm" spaces of functions on the unit ball of CN are given,

and this is used to identify the dual space of such mixed-norm spaces. Several

representation theorems that follow from the duality are also given.

1. Introduction. The classical Bergman space Ap on the unit ball B = Bn in

C^ is the set of functions / G H(B^) satisfying

(^ |/(z)|* dm(*))
1/p

< CO.

Here 0 < p < oo, the space CN is equipped with the usual inner product defined

for z = (zi,... ,zn) and w = (wi,... , wn) in C^ by (z, w) = J2i=i zi™ï ajl^ vtith

the associated norm |z| = (z, z)ll2, H(BN) is the set of holomorphic functions on

Bn, and m is Lebesgue measure on Bn normalized so that m(B^) = 1. Using

"polar coordinates" (see [6, 1.4.3]), this integral may be written as

{2N fI(Islf{rTWda{T))r2N~ldr)
1/p

where I = [0,1), S = Sn — dBx, and o is the rotation invariant positive Borel

measure on Sn with ct(Sn) — 1-

We study here the following weighted "mixed norm" generalizations of the Berg-

man spaces. If 0 < p, q < oo and if o > — 1, define

A^ = {/e/i(S)|||/||p,gia<oo},

where

\f(rr)\" do-(r)j      (1 - r3) V"*"1 dr J      .lp,q,a

Note that when q = p and a — 0, this is precisely the Bergman space. Also note

that

= (/llMllP(S)(l-'-2)V^1dr)
1/«

up,q,a '
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1172 STEVE GADBOIS

where, for 0 < r < 1, fr is the function defined on S by fr(r) = f(rr). Using this

notation, we also define

||/||oo,0,Q = (^ |f/rîlîco(s)(l - r2)\2N-i drX '

||/||p,oo =   sup   ||/r||LP(s),    and
0<r<l

||/||oo,oo =    SUp    ||/r||L-(S),
0<r<l

and denote the spaces of holomorphic functions for which these are finite by A£°9,

Apoc, and A0000 respectively. (The space Ap°° is the classical Hardy space Hp.)

The set of (equivalence classes of) measurable functions satisfying the integrability

condition defining A™ is denoted by Lp£. It is easy to check that

ll/ + C9,a^ll/IIL,a + IIC9,Q
where s — min{p, q, 1}; thus (A£9,|| Vv,q,o) an^ (¿a9'II \\p,q,a) are metric spaces,

and are normed linear spaces if 1 < p, q < oo. The basic reference for mixed norm

spaces (including, but not limited to, our spaces L™) is Benedek and Panzone, [2].

Note that by two applications of Holder's inequality, L^1 C Lp^2 if either

p2 < pi    and    <72 < qi    and    -<-
<?i Q2

or

P2 < Pi    and   672 = qi    and    c*i < Q2-

In either case, the containment is proper (unless pi = p2, t/i = q2, and ai = a2),

since then there is some constant s satisfying the inequality N/pi +(ai + l)/qi < s

< N/p2 + (a2 + l)/q2, and f(z) = (l-(z,ç))~s (withf G S fixed) defines a function

in A™2 not in Apa\qi :

ll/ll?,,,a = I (¡s II - (rr,ç)\-spdo(T)y P (1 - r2)ar2N-1 dr

/,(

. <tlv
(l-r)N-ap\      (l-r)ar2N~Ur

I x '

by Proposition 1.4.10 of [6], and this integral is finite if and only if s < N/p

+(a+l)/q. (We write a(x) ~ b(x) if there exist constants c and C such that 0 < c <

a(x)/b(x) < C < oo as x ranges over some index set.)

A few of the basic properties of Ap£ are put forth in section two. Section three

deals with boundedness of the Bergman projection, and this result is used to identify

the dual space of our mixed norm spaces in §4. After introducing the pseudohy-

perbolic metric in §5, §6 and §7 are concerned with representations of the mixed

norms and of functions in the mixed norm spaces. These results are generalizations

of work of Luecking in [4].

This work represents some of the results contained in the author's Ph.D. dis-

sertation completed at Michigan State University under the direction of Professor

William Sledd.

2. Basic properties of A^. The completeness of Ap£ is a consequence of the

following growth condition. Our statements and proofs here will resemble those in

[7]-



BERGMAN SPACES 1173

Proposition 2.1. /// g A™ (o < p,q < oo, -1 < a), then

1/(2)1 < C||/||pi9ia(l - |2|)-(^+(Q+1)/")    for every z G B

for some C independent of f.

PROOF.   First suppose 0 < p < oo. Since |/|p is plurisubharmonic, for 0 < r <

s < 1 and t G S we have

|/(rr)|"< f\f(8r,)\pP((r/a)T,V)da(r,)
Js

<2N(s-r)~N Í' \f(sn)\pdo(n),
Js

i.e.,

(2.1) |/(rr)|(S-r)^<q|/s||Lp(S).

Here P denotes the invariant Poisson kernel defined for z G B and c G S by

(i-N |2N     N^

PiZ^-\\l-(z,c)\2,

For basic facts concerning the invariant Poisson kernel, see [6, Section 3.3].   If

q = oo, the result follows from (2.1) immediately. If 0 < q < co, we then have

|/(rr)|« j\s - r)N^p(l - s)^2^1 ds < C||/|ß,,,a.

Letting x = (s - r)/(l - r), for 1/2 < r < 1 it follows that

C\\f\\l,q a > \f(rr)\g(l - r)^/P+(a+1)/*)« f  xNq'p(l - x)a[(l - r)x + r]2^1 dx
Jo

„ |/(rr)|9(l - r) Wp+("+i)/9)9 f  xNq/p(i - x)a dx
Jo

so the result follows. If 0 < r < 1/2, the result follows from the maximum modulus

theorem.

Now suppose p = oo. Then |/(rr)| < ||/s||z-°°(S) for 0 < r < s < 1, and the

result for 0 < q < oo is proven by the same procedures.

COROLLARY 2.2. If 1 < p,q < oo and —1 < a, then A£? is a closed subspace

of Lpq, and is hence a Banach space.

PROOF. Suppose /„ —» / in Lp£ with /„ G Av¿. Then there is a subsequence

fnk with fnic -* f pointwise a.e. [2, p. 304]. By Proposition 2.1, we also have that

/„ is uniformly Cauchy on compact subsets of B, so /„ is uniformly convergent on

compact subsets of B to some g since Lp¿ is complete [2, p. 304]. But g is analytic

[6, 1.1.4] and / = g a.e., so g G A™ and /„ — g in Ap¿.

PROPOSITION 2.3.   IfO<p,q<œ, then limr_^i- ||/r - /||p?,a = 0 for every

feApa*.

This follows immediately from the dominated convergence theorem. (For details,

see [7, Proposition 3.3].) So the functions analytic in a neighborhood of B form a

dense subset of Ap<1.
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3. Boundedness of the Bergman projection on Lp£. Suppose t > — 1. The

Bergman kernel Kt is defined by

(1 - (*,«))*+*■«

for 2, tu e Btv- Note that:

(a) for fixed w € B, Kt(-, w) G A™ and

(b) for fixed z G B, Kt(z, ■) G Ug if tq > -(a+1). (But Kt(z, ■) is not conjugate

holomorphic unless t = 0.)

Both observations follow because the denominator of Kt is bounded above and

below in B.

The Bergman projection Tt is defined by

Ttf(z) = (N¿t^JgKt(z,w)f(w)dm(w)

for z G Bn and / for which the integrands are in L1(dm). In general, the binomial

coefficient ( £l) is WN+i)rít+iV ^ ^s clear that, for fixed t, Ttf is holomorphic

when defined.

In this section, a condition on t, p, q, and a will be found which ensures that

Tt is bounded on Lp£; there will be no dependence on p other than p > 1. In

[3], Forelli and Rudin showed that Tt is bounded on Lp(dm) (1 < p < oo) if and

only if (t -f l)p > 1. Then in [1] Békollé showed that Tt is bounded on Lp(dma)

(1 < p < oo, -1 < a, dma(z) = (1 - |z|2)a dm(z)) if and only if (i + l)p > a + 1.

(He actually showed this for more general weights satisfying a "Bp condition", a

condition analogous to Muckenhoupt's Ap condition introduced in [5].) An impor-

tant tool here will be the following pair of facts due to Forelli and Rudin in [3,

Proposition 2.7]:

(3.1a)     f \Kt(z,w)\(l - \w\2)~cdm(w) < C(l - \z\2)~c
Jb

for every z G B  if 0 < c < í + 1;

(3.1b)     / \Kt(z,w)\(l- \z\2)~cdm(z) < (7(1 -
Jb

for every «;Gßif0<c + i<t-(-l.

THEOREM 3.1. Tt maps L™ (1 < p < oo, 1 < <? < oo, -1 < a) boundedly into

A%> if(t + l)q>a+l. Furthermore, Ttf = f and TtJ = JfÖj for every f G Ap£.

\w?Yc

PROOF. As noted in [6, Proposition 7.1.2], Ttf = f and Ttf = /(0) are true

for / G H°°(B), hence for / G A™ by density of H°°(B) in A™, once continuity is

verified.
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If 1 < p < oo, vector-valued integration and Holder's inequality yield that

\\(Ttf)r\\LHS)=c\\ f f Ktir-^fMdeivW-ida
\\Ji Js

<C f\\f Kt(r;sri)fa(n)Mri)
Ji WJs

LP(S)

s2»'1 ds
LP(S)

P

dcr(T) „2N-1

<C l\ls^ls\Kt(rT,sr,)\\fs(V)\pdo(V)^

if Y/p'      1Vp
Í /  \Kt(rT,ST))\dcj(n) J       da(r)       is^-'ds.

(As usual, p' denotes the conjugate exponent of p.)   But fs |At(rr,sr})\do(r}) is

independent of r, so by Fubini's theorem, the expression above is less than

Cj   fJs\Kt(rT,sn)\d&(r,)\ (J\fM\pMv)]»)

= Cff \Kt(rr,sri)\da(r,) H/^S)*2"-1 ds.

„2JV-1 ds

This estimate can also be verified in similar way if p = 1 or p = oo.

Using this estimate and Holder's inequality, we have

I«      Al-r2)ar2N-Ur
lr\\LP(Sy

(1-r2) V^dr

\\Ttf\\p,q,a=cjUTtf)r

< C f (j \Kt(rr, 5/7)1(1 - s2ySq' dm^n)}" "

x ^lB\Kt(rT,sr1)\(l-s2)S'1\\fs\\lpls)dm(srl)^ (1 - r^V""1 dr,

where 6 will be chosen later. But

/ |At(rr,S7?)|(l-S2)  Sq' dm(sr¡) < C(l - r2)  6q'
Jb

by (3.1a), as long as 0 < 6q' < t + 1. Using this and Fubini's theorem, we have

im/||«,9,a<C^((l-rV9')

x ÇJb \Kt(rr, 577)|(1 - s2)6<*\\fa\\qLHS)dm(sr,)} (1 - r2)^2""1 dr

= cfi\\f3\\qLHS)(l-s2)6q

xjj \Kt(rT,sn)\do-(n)(l-r2)a '^r^-Urs^-Us.



1176 STEVE GADBOIS

But

\Kt(rT,sr])\do(ri)(l - r2)a'6qr2N-1 dru.
= [ |At(rr,s77)|(l-r2)   (  a+6q) dm(rr)

Jb

<C(l-s2)-{-a+Sq)=C(l-s2)a-Sq

by (3.1b), as long as 0 < -a + 6q + t < t + 1. So

I|rt/|I2,,,Q <c\i ||/s|I1p(s)(i - s2)V"-1 ds = c||/||«,,,a.

To choose suitable i, note that there exists 8 satisfying 0 < 6q'  < t + 1 and

0 < -a + 6q + t < t + 1 if and only if

(t + l)q > a + 1.

As in [3, p. 594], we immediately get the following.

COROLLARY   3.2.   For 1  < p < oo,  1  < q < oo,  and -1  < a,  we have

\\f\\p,q,a < C||Re f\\p,q,a for every f G H(B) with /(0) = 0.

PROOF.   Choose t > (a + l)/q - 1. Let u = Re / and fix 0 < r, s < 1. Then

/. = Tt(fs) = Tt(fs +Ts) = 2Tt(us), so

f \fs(rr)\p do(r) = 2P [ \Ttus(rr)\p do(r).
Js Js

Thus
q/p

\\fs\\qP,q,a = I (/s |/.(rr)|" Mr))     (1 - r2)V""1 dr

= 2q Í ( j \Ttus(rr)\p do(r))      (1 - r2)ar2N~l dr

= nTtUs\\lq,a<2qAq\\us\\%ta,

and the result follows upon letting s —* 1.

4. Representation of the dual space of A™. Representation of the dual

space of Ap£ will follow from boundedness of the Bergman projection (Theorem 3.1).

The case N = 1, a = 0 was handled by Shapiro in [7, Corollary 3.6]. In [4,

Theorem 2.1], Luecking identified the dual space of Apa using the boundedness of

the Bergman projection on Apa and Ap,l_ ,>.

Given any fixed g G Ap?l_ ,>, define the linear functional Lg on Ap£ by

Lgf = (f,9) = I fgdm
Jb

for / G A™. By two applications of Holder's inequality,

|(/,ff)|  <  Wf\\p,q,j9\\p',q',a(l-q')-
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THEOREM 4.1. Suppose that 1 < p < oo, max{l,û! + l} < q < oo, and —1 < a.

Then the map taking g to Lg is a linear homeomorphism of Ap?l_ ,, onto the dual

space of Apq.

PROOF.  As noted above, any g G Ap?í_ ,, defines a bounded linear functional

Lg on A£«, with ||Z,J < ||9||p',?',a(i-g')-

Now take any L in the dual space (A™)*. Extend to L G (L^)* by the Hahn-

Banach theorem. Write w(r) = (1 — r2)a, and note that j G Lpq if and only if

jcj-V" G ¿p«. Define the functional A G (Lpq)* by A/ = KjuT1/9); then there

exists some function k G Lp q  such that Aj = fBjkdm. (See [2, Theorem 3.1] for

the generalized representation theorem.) Let h = kui1^. We have h G L^'_,j and

Lf = (f,h) for all / G Lpq. Since Kr¡(z,w) = Kq(w,z), Fubini's theorem implies

that

(4.1) (T0/i, /2) = (/i,T0/2)    for h G Lpq n L2 and f2 G Lp^_ql) n L2.

(To justify the application of Fubini's theorem, note that Tn/i and T0/2 are in L2

since fi and f2 are, either by Theorem 3.1 or by Békollé's result.) Now, q > a + 1

and q' > a(l — q') + 1, so by Theorem 3.1, T0 is bounded on Lpq and Lpx?1_ ,y By

continuity of To and density of the respective spaces [2, p. 308], (4.1) is also true

for fi G Lpq and f2 G L%.a,y Let g = T0h. So g G Ap¿_ql), and for / e A™ we

have Lf = </, h) = (T0/, h) = (f,T0h) = (f,g), i.e., L = Lg.

If g G A^/'_ ,s defines the zero functional, then since Kq(z, ■) G A™ for any fixed

z G B, we have 0 = (K0(z, -),g) = T0g(z) — g(z), i.e., g = 0. So the map taking

¡7 to Lg is a one-to-one, continuous, linear transformation of Apa'fl_ ,, onto (A™)*.

By the open mapping theorem, the map is actually a linear homeomorphism.

One can use other (i.e., weighted) duality pairings (and other kernels) to get

other representations of (A™)*.

5. The pseudohyperbolic "metric". The pseudohyperbolic "metric" p is

defined on Bn by p(z,w) = \$w(z)\ where $„, is the automorphism of Bn given

for w ^ 0 by

^w(z)  — 1 / \
1- (z, w)

and for w = 0 by $0(2) = -2. The corresponding "balls" are

E(w, 6) = Í"1 (¿Bjv) = { 2 € BN I p(z, w)<6}

for w G BN and 0 < 6 < 1. Note that m(E(w, 6)) - 62N(1 - \w\)N+1; see [6, 2.2.7].

We will have need of the following.

LEMMA 5.1.   Fix 0 < r < 1 and 0 < 6 small.  Then

r - à      11      r + $, ',   -,
< |2| <-t    for every z G L(r,b).

1-rd      '  '      1 + rS

(Here E(r, 6) means E(w, 6) with w — (r, 0,... , 0) G Bn-)
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PROOF.   Write z = (2i,22,... ,zn) — (21,2') and suppose 2 € E(r,8). Then

<52|l-r21|2>|r-21|2-r(l-r2)|2,|2,

i.e.,

2r(l - ¿2)Re (zx) > (r2 - b2) + (1 - ó2r2)|2,|2 + (1 - r2)|z'|.

Now, 4rRe (zx) + r2|2'|2 < r2 + 4r|zi| -r2|2i|2 < 4r < 4, so

(r2 - 62) + (1 - 62r2)\z\2

= l(r2 - 62) + (1 - 82r2)\zi\2 + (1 - r2)|^'|2] + r2(l - ë2)\z'\2

<2r(l-62)(Re(zi)+r\z'\2/2)

< 2r(l - ê2)(\zi\2 + r\z'\2Re (zi) + r2|2'|4/4)1/2

< 2r(l - <52)(|zi|2 + \z'\2)^2 = 2r(l - 62)\z\.

Hence (\z\,0') G E(r,6), and (r - 6)/(l - rS) < \z\ < (r + 6)/(l + rô).

6. A norm-representation theorem. In [4, Theorem 5.1], Luecking shows

that
/       km \V*

\\f\\H, ~    sup 52 l/(«mfc)|P(l - rmf for all / G Hp
V m fc=i /

where 0 < ro < ri < • • • —► 1 and {amk} satisfies

(1) \o-mk\ = i"m for each m = 0,1,2,... and each fc = 1,2,... , km,

(2) rmSN C \JkE(amk,6) for each m for some 6 = 6(p) sufficiently small, and

(3) E(amk, e)r\E(amk', e) = 0 for each m and each k ^ k' for some 0 < e(p) < 6.

Such a set of points {amjt} will be called an e—6 lattice.

A close analysis of Luecking's proof yields the following.

THEOREM 6.1. FixO < p < 00, 0 < q < 00, and -1 < a. Letrm = l-2_m for

m = 0,1,2,... and suppose {amk} is an e—6 lattice for 8 = 8(p, q, a) sufficiently

small. Then

/oo    /*m \*/P \1/q

U/H™,* ~     £    E \f(<*rnk)\P2-mN        2-m(Q+1)        for every f G A™.

\m=0 \k=l J J

PROOF. Let rme = (rm + e)/(l + rme), Emk = E(amk,e), Am = (jkEmk, and

Ime — [(rm - £■)/(! - rme), (rm + e)/(l + rme)). Then by plurisubharmonicity of

|/|p, the separation property (3), and Lemma 5.1,

£|/(amfc)|p2-" <2-" fc<>!sJßSl)
k \  k m^rnk)      J

< c72-mN2m(7V+1> J2 I      I/I" dm = C2m I    I/I" dm
k    JEmk JAm

< C2m Í     (j \f(rr)\p da(T)\ r2N~l dr

< C2™ Qf    r2N~Ur) \\frmc\\pLP{s) < C\\frmt\\lHS).
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Since we may assume that e < 1/3 (at the cost of increasing the constant C), we

have rm£ < (rm + l)/2 = rm+i, and thus

(\ q/p

£ \f(amk)\P2-mN        2—(«+1) < c£ ||/rm+1 ll«,^^-»^1)
k / m

< CJI ll/rlllp(S)(l - r)ar2N-1 dr = C\\f\\qp^a.

In the other direction, Luecking uses a change of variables, Fubini's theorem,

and the "denseness" property (2) and actually shows that

c\\frJ\lHS) < C8p\\frmJ\PLP{s)+J2\f(«rnk)\P2-mN
k

SO

(\l/P

C8p\\frm+i \\PLP{S) + £ \f(amk)\P2-mN        2—(«+1)
k )

<C7'£ lc8WTm+AqLP{s)+(£\f(amk)\p2-™A      J 2-m(«+1)

where C" = 1 if q < p and C = 2q/p~1 if p < q. This is less than

\ q/p
y — mN \       n — m(a+l)

C6q¿2\\frm+A\lis)2-m{a+1) +C£ (£|/(amfc)|p2-
m m    \  k

< ™g\\f\\l,q,a + C£    £ |/(amfc)|P2-miV        2—(-+1)
m    \  fc /

and the result follows for 8 sufficiently small.

As a consequence of this theorem, no such e—8 lattice can be a subset of the

zero set of an Apq function not identically zero.

7. Representation of Apq functions. The duality result and the equivalence

of norms result (Theorems 3.1 and 6.1) can be used to obtain a representation of

Apq functions as sums of kernel functions. This generalizes Luecking's Corollary 4.4

in [4].

If v is a weight function on {0,1,2,...}, we write c = {cmk}m¡k e ¿S' if

/   oo      / oo \9/P       \1/q

E EW    M   s||c|1— <0°-
\m=0  \fc=l / J

THEOREM 7.1. Suppose 1 < p < oo, 1 < q < oo, and -1 < a. Let

rm = l-2-m andvm = (1 - rm)1+JV,'/p'+a(1_9')r^v-1 for each m = 0,1,2,...,

and suppose {amk} is an e—8 lattice for 8 — 8(p,q,a) sufficiently small. Then

every f G Apq is of the form

OO      km

f(Z)=  £  £cmfcWm(l- {Z,amk))~

m=0k=l

for some c G lpq, and any f of this form is in Apq.

-N-l
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Note that no claim of uniqueness of c G ¡f? is being made.

PROOF.  As in the proof of Theorem 6.1,

HsIkaWW) ~ [£ fe \a(amk)\A ? ' (1 - r^+W^l-,^!

i.e.,

Ilffllp',î',a(l-«') ~ llff(amfc)||p< ,,<,,;•

Thus the map R: Ap?1_ ,, —> lp q defined by (Rg)mk = g(amk) is a linear iso-

morphism. Hence R is one-to-one with closed range, and R* : lpq —► Apq is onto.

(Since max{l, a(l - q') + 1} < q' < oo, we have (Ap^_ql))* ~ A™ by Theorem 3.1,

where the duality pairing does not involve a weight, and we have (lpq) ~ lpq by

Theorem 3.1 of [2], where the duality pairing does involve the weight v.)

To identify R*, take g G Ap?l_ ,-. and c G lpq, supposing first that c has only

finitely many nonzero terms. Then

/ (R*c)gdm = (R*c,g) = (c,Rg) = £ [ £cmfc£>(amfc) I vm
Jb m   V k 1

££cmfcum/  g(z)(l- (amk,z))  N  1 dm(z)
J Bm     k

= I   I ££cmfct>m(l - (z,amk))  N  1 1 g(z)dm(z),

JB\m      k J

so R*c(z) = ¿Zm¿ZkcmkVm(l - (z,amk)) N K To get the result for general

c G /£', use finite approximations to c (for which the result was just verified),

the continuity of R*, and the fact that convergence in A^ implies pointwise con-

vergence.
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