# ON THE GLAUBERMAN CORRESPONDENCE 

GABRIEL NAVARRO

(Communicated by Warren J. Wong)


#### Abstract

In this paper we give an elementary proof of the $p$-group case of Glauberman's correspondence.


## 1. Introduction

Let $p$ be a prime number.
Let $S$ be a $p$-group acting on a finite $p^{\prime}$-group $G$. Let $C=C_{G}(S)$ and $\operatorname{Irr}_{S}(G)=\left\{\chi \in \operatorname{Irr}(G) \mid \chi^{s}=\chi, \forall s \in S\right\}$.

It is well known that the map $K \rightarrow K \cap C$ defines a bijection from the set of $S$-invariant conjugacy classes of $G$ onto the set of conjugacy classes of $C$ [2, 13.10].

Let $R$ be the full ring of algebraic integers in $C$, let $M$ be a maximal ideal of $R$ containing $p R$, and set $F=R / M$. Let ${ }^{*}: R \rightarrow F$ the canonical homomorphism.

For $\chi \in \operatorname{Irr}(G)$, the map defined on $Z(F[G])$ by $\lambda_{\chi}(\widehat{K})=\omega_{\chi}(\widehat{K})^{*}$ is an algebra homomorphism from $Z(F[G])$ to $F$. Note that $\lambda_{\chi}(\widehat{K})=(\chi(x)|K| / \chi(1))^{*}$ for $x \in K$.

## 2. Two lemmas

2.1. Lemma. Let $\chi \in \operatorname{Irr}_{S}(G)$. We define $\delta_{\chi}: Z(F[C]) \rightarrow F$ by setting $\delta_{\chi}(\widehat{K \cap C})$ $=(\chi(x)|K| / \chi(1))^{*}$ for $K S$-invariant conjugacy class of $G$ and $x \in K \cap C$. Then $\delta_{\chi}$ is an algebra homomorphism.
Proof. Since $\delta_{\chi}(\widehat{K \cap C})=\lambda_{\chi}(\widehat{K})$, it suffices to show that

$$
\delta_{\chi}\left(\widehat{K_{i} \cap} C \widehat{K_{j} \cap} C\right)=\lambda_{\chi}\left(\widehat{K}_{i} \widehat{K}_{j}\right)
$$

for $K_{i}, K_{j}, S$-invariant conjugacy classes of $G$.
Write $K_{1}, \ldots, K_{h}$ for the $S$-invariant conjugacy classes, and $K_{h+1,1}, \ldots$, $K_{h+1, a_{1}}, \ldots, K_{h+t, 1}, \ldots, K_{h+t, a_{t}}$ for the rest, where $K_{h+j, 1}, \ldots, K_{h+j, a_{j}}$ is an $S$ - orbit. Note that $a_{j}=p^{b_{j}}>1$.

Received by the editors January 15, 1988 and, in revised form, August 1, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 20C15.
Key words and phrases. The Glauberman correspondence.

It is clear that we can write

$$
\widehat{K}_{i} \widehat{K}_{j}=\sum_{k=1, \ldots, h} a_{i j k} K_{k}+\sum_{l=1, \ldots, t} b_{i j l}\left(\sum_{m=1, \ldots, a_{l}} \widehat{K}_{h+l, m}\right) .
$$

Fix $x_{k} \in K_{k} \cap C$. Since $a_{i j k}=\left|\left\{(x, y) \in K_{i} \times K_{j}: x y=x_{k}\right\}\right|^{*}$ and $\mid\{(x, y) \in$ $\left.K_{i} \times K_{j}: x y=x_{k}\right\}|\equiv|\left\{(x, y) \in K_{i} \cap C \times K_{j} \cap C: x y=x_{k}\right\} \mid \bmod p$, we have that $\widehat{K_{i} \cap} C \widehat{K_{j} \cap} C=\sum_{k=1, \ldots, h} a_{i j k} \widehat{K_{k} \cap} C$.

Now, since $\lambda_{\chi}$ is constant over each $S$-orbit, we have

$$
\begin{aligned}
\lambda_{\chi}\left(\widehat{K}_{i} \widehat{K}_{j}\right) & =\sum_{k=1, \ldots, h} a_{i j k} \lambda_{\chi}\left(\widehat{K}_{k}\right)+\sum_{l=1, \ldots, t} b_{i j l} p^{b_{1}} \lambda_{\chi}\left(\widehat{K}_{h+l, 1}\right) \\
& =\sum_{k=1, \ldots, h} a_{i j k} \lambda_{\chi}\left(\widehat{K}_{k}\right) \\
& =\sum_{k=1, \ldots, h} a_{i j k} \delta_{\chi}\left(\widehat{K_{k} \cap} C\right) \\
& =\delta_{\chi}\left(\sum_{k=1, \ldots, h} a_{i j k} \widehat{K_{k} \cap} C\right)=\delta_{\chi}\left(\widehat{K_{i} \cap} C K_{j} \cap C\right) .
\end{aligned}
$$

The following result is well known. We give the proof to make it clear that no results on $p$-blocks are needed for this paper.
2.2. Lemma. Suppose $p$ does not divide $|G|$. The maps $\lambda_{\chi}$ for $\chi \in \operatorname{Irr}(G)$ are distinct and are all the algebra homomorphisms from $Z(F[G])$ to $F$.
Proof. $F[G]$ is a direct sum of full matrix rings over $F$, so $Z(F[G]) \cong F^{k}$ where $k=\operatorname{cl}(G) \mid$. There are thus $k$ algebra homomorphisms $Z(F[G]) \rightarrow F$ and it is enough to show that the $\lambda_{\chi}$ are distinct.

Let $e_{\chi}=\chi(1) \sum_{g \in G} \chi\left(g^{-1}\right)^{*} g \in Z(F[G])$. Then $\lambda_{\chi}\left(e_{\chi}\right)=|G|^{*} \neq 0$ and $\lambda_{\psi}\left(e_{\chi}\right)=0$ for $\chi \neq \psi$. The result now follows.

## 3. The Glauberman correspondence

Notation. Given $\chi \in \operatorname{Irr}_{S}(G)$, since $\delta_{\chi}$ is an algebra homomorphism $Z(F[C]) \rightarrow$ $F$, it follows that there exists a unique $\tilde{\chi} \in \operatorname{Irr}(C)$ such that $\delta_{\chi}=\lambda_{\tilde{\chi}}$. Thus for $x \in C$, we have

$$
(\chi(x)|K| / \chi(1))^{*}=(\tilde{\chi}(x)|K \cap C| / \tilde{\chi}(1))^{*}, \quad \text { where } K=C l_{G}(x)
$$

Since $|K| \equiv|K \cap C| \not \equiv 0 \bmod p$, this gives $\tilde{\chi}(1) \chi(x) \equiv \chi(1) \tilde{\chi}(x) \bmod M$, for all $x \in C$.
3.1. Theorem. The map $\operatorname{Irr}_{S}(G) \rightarrow \operatorname{Irr}(C)$ defined by $\chi \rightarrow \tilde{\chi}$ is a bijection. Also, $\left[\chi_{C}, \tilde{\chi}\right] \equiv \pm 1 \bmod p$, and $\left[\chi_{C}, \theta\right] \equiv 0 \bmod p$ for $\tilde{\chi} \neq \theta \in \operatorname{Irr}(C)$.
Proof. Let $\chi \in \operatorname{Irr}_{S}(G)$ and $\theta \in \operatorname{Irr}(C)$. Then

$$
\begin{aligned}
&|C| \tilde{\chi}(1)\left[\chi_{C}, \theta\right]=\tilde{\chi}(1) \sum_{x \in C} \chi(x) \theta\left(x^{-1}\right) \equiv \chi(1) \sum_{x \in C} \tilde{\chi}(x) \theta\left(x^{-1}\right) \\
&=\chi(1)[\tilde{\chi}, \theta]|C| \quad \bmod M .
\end{aligned}
$$

Since $p$ does not divide $|C|$, this gives $\tilde{\chi}(1)\left[\chi_{C}, \theta\right] \equiv \chi(1)[\tilde{\chi}, \theta] \bmod p$. Since $p$ does not divide $\tilde{\chi}(1)$, taking $\theta \neq \tilde{\chi}$, this gives $\left[\chi_{C}, \theta\right] \equiv 0 \bmod p$, and taking $\theta=\tilde{\chi}$ gives

$$
\begin{equation*}
\tilde{\chi}(1)\left[\chi_{C}, \tilde{\chi}\right] \equiv \chi(1) \not \equiv 0 \bmod p . \tag{1}
\end{equation*}
$$

Thus $\tilde{\chi}$ is the unique irreducible consituent of $\chi_{C}$ with multiplicity not divisible by $p$.

Now let $\chi, \varphi \in \operatorname{Irr}_{S}(G)$. Then

$$
|G|[\chi, \varphi]=\sum_{x \in G} \chi(x) \varphi\left(x^{-1}\right) \equiv \sum_{x \in C} \chi(x) \varphi\left(x^{-1}\right)=|C|\left[\chi_{C}, \varphi_{C}\right] \quad \bmod M
$$

(using that $\chi, \varphi$ are $S$-invariant). Also, $|G| \equiv|C| \not \equiv 0 \bmod p$, and so $[\chi, \varphi] \equiv$ $\left[\chi_{C}, \varphi_{C}\right] \bmod p$.

Since $\chi_{C}=\left[\chi_{C}, \tilde{\chi}\right] \tilde{\chi}+p \Delta$ and $\varphi_{C}=\left[\varphi_{C}, \tilde{\varphi}\right] \tilde{\varphi}+p E$, we have that $[\chi, \varphi]=$ $\left[\chi_{C}, \tilde{\chi}\right]\left[\varphi_{C}, \tilde{\varphi}\right][\tilde{\chi}, \tilde{\varphi}] \bmod p$. (2)

This shows that our map is injective.
If $\alpha \in \operatorname{Irr}(C)$ is not in the image of our map, then $\left[\chi_{C}, \alpha\right]=\left[\chi, \alpha^{G}\right] \equiv$ $0 \bmod p$ for all $\chi \in \operatorname{Irr}_{S}(G)$. Since $\alpha^{G}$ is $S$-invariant, $\left[\alpha^{G}, \varphi^{s}\right]=\left[\alpha^{G}, \varphi\right]$ for all $\varphi \in \operatorname{Irr}(G)$, for all $s \in S$. This implies that $p$ divides $\alpha^{G}(1)$, a contradiction.

Finally, taking $\chi=\varphi$ in (2), we get $1 \equiv\left[\chi_{C}, \tilde{\chi}\right]^{2} \bmod p$ and so $\left[\chi_{C}, \tilde{\chi}\right] \equiv$ $\pm 1 \bmod p$ as claimed.

## Acknowledgment

The author wishes to express his gratitude to Professor I. M. Isaacs for his invaluable advice.

## References

1. G. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465-1488.
2. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

Departamento de Algebra, Facultad de Ciencias Matemáticas, Universitat de Valencia, c/o Doctor Moliner, 50 Burjasot, Valencia, Spain

