ON THE GLAUBERMAN CORRESPONDENCE

GABRIEL NAVARRO

(Communicated by Warren J. Wong)

ABSTRACT. In this paper we give an elementary proof of the *p*-group case of Glauberman's correspondence.

1. INTRODUCTION

Let p be a prime number.

Let S be a p-group acting on a finite p'-group G. Let $C = C_G(S)$ and $Irr_S(G) = \{\chi \in Irr(G) \mid \chi^s = \chi, \forall s \in S\}$.

It is well known that the map $K \to K \cap C$ defines a bijection from the set of S-invariant conjugacy classes of G onto the set of conjugacy classes of C [2, 13.10].

Let R be the full ring of algebraic integers in C, let M be a maximal ideal of R containing pR, and set F = R/M. Let $*: R \to F$ the canonical homomorphism.

For $\chi \in \operatorname{Irr}(G)$, the map defined on Z(F[G]) by $\lambda_{\chi}(\widehat{K}) = \omega_{\chi}(\widehat{K})^*$ is an algebra homomorphism from Z(F[G]) to F. Note that $\lambda_{\chi}(\widehat{K}) = (\chi(x)|K|/\chi(1))^*$ for $x \in K$.

2. Two lemmas

2.1. Lemma. Let $\chi \in Irr_S(G)$. We define $\delta_{\chi}: Z(F[C]) \to F$ by setting $\delta_{\chi}(\widehat{K \cap C}) = (\chi(x)|K|/\chi(1))^*$ for K S-invariant conjugacy class of G and $x \in K \cap C$. Then δ_{χ} is an algebra homomorphism.

Proof. Since $\delta_{\chi}(\widehat{K \cap C}) = \lambda_{\chi}(\widehat{K})$, it suffices to show that

$$\delta_{\chi}(\widehat{K_i \cap CK_j \cap C}) = \lambda_{\chi}(\widehat{K}_i \widehat{K}_j)$$

for K_i , K_i , S-invariant conjugacy classes of G.

Write K_1, \ldots, K_h for the S-invariant conjugacy classes, and $K_{h+1,1}, \ldots, K_{h+1,a_1}, \ldots, K_{h+1,a_1}, \ldots, K_{h+t,1}, \ldots, K_{h+t,a_t}$ for the rest, where $K_{h+j,1}, \ldots, K_{h+j,a_j}$ is an S- orbit. Note that $a_i = p^{b_j} > 1$.

Received by the editors January 15, 1988 and, in revised form, August 1, 1988. 1980 Mathematics Subject Classification (1985 Revision). Primary 20C15. Key words and phrases. The Glauberman correspondence.

> ©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

It is clear that we can write

$$\widehat{K}_i \widehat{K}_j = \sum_{k=1,\dots,h} a_{ijk} K_k + \sum_{l=1,\dots,t} b_{ijl} (\sum_{m=1,\dots,a_l} \widehat{K}_{h+l,m}).$$

Fix $x_k \in K_k \cap C$. Since $a_{ijk} = |\{(x, y) \in K_i \times K_j : xy = x_k\}|^*$ and $|\{(x, y) \in K_i \times K_j : xy = x_k\}| \equiv |\{(x, y) \in K_i \cap C \times K_j \cap C : xy = x_k\}| \mod p$, we have that $\widehat{K_i \cap CK_j \cap C} = \sum_{k=1,\dots,h} a_{ijk} \widehat{K_k \cap C}$. Now, since λ_{χ} is constant over each S-orbit, we have

$$\begin{split} \lambda_{\chi}(\widehat{K}_{i}\widehat{K}_{j}) &= \sum_{k=1,\dots,h} a_{ijk}\lambda_{\chi}(\widehat{K}_{k}) + \sum_{l=1,\dots,t} b_{ijl} p^{b_{l}}\lambda_{\chi}(\widehat{K}_{h+l,1}) \\ &= \sum_{k=1,\dots,h} a_{ijk}\lambda_{\chi}(\widehat{K}_{k}) \\ &= \sum_{k=1,\dots,h} a_{ijk}\delta_{\chi}(\widehat{K_{k}\cap C}) \\ &= \delta_{\chi}(\sum_{k=1,\dots,h} a_{ijk}\widehat{K_{k}\cap C}) = \delta_{\chi}(\widehat{K_{i}\cap C}\widehat{K_{j}\cap C}). \end{split}$$

The following result is well known. We give the proof to make it clear that no results on *p*-blocks are needed for this paper.

2.2. Lemma. Suppose p does not divide |G|. The maps λ_{χ} for $\chi \in Irr(G)$ are distinct and are all the algebra homomorphisms from $Z(\hat{F[G]})$ to F.

Proof. F[G] is a direct sum of full matrix rings over F, so $Z(F[G]) \cong F^k$ where k = cl(G). There are thus k algebra homomorphisms $Z(F[G]) \to F$ and it is enough to show that the λ_{γ} are distinct.

Let $e_{\chi} = \chi(1) \sum_{g \in G} \chi(g^{-1})^* g \in Z(F[G])$. Then $\lambda_{\chi}(e_{\chi}) = |G|^* \neq 0$ and $\lambda_{\psi}(e_{\chi}) = 0$ for $\chi \neq \psi$. The result now follows.

3. THE GLAUBERMAN CORRESPONDENCE

Notation. Given $\chi \in Irr_{\mathcal{S}}(G)$, since δ_{χ} is an algebra homomorphism $Z(F[C]) \to F$, it follows that there exists a unique $\tilde{\chi} \in Irr(C)$ such that $\delta_{\chi} = \lambda_{\tilde{\chi}}$. Thus for $x \in C$, we have

 $(\chi(x)|K|/\chi(1))^* = (\widetilde{\chi}(x)|K \cap C|/\widetilde{\chi}(1))^*$, where $K = Cl_G(x)$.

Since $|K| \equiv |K \cap C| \neq 0 \mod p$, this gives $\tilde{\chi}(1)\chi(x) \equiv \chi(1)\tilde{\chi}(x) \mod M$, for all $x \in C$.

3.1. Theorem. The map $Irr_{\mathcal{S}}(G) \to Irr(C)$ defined by $\chi \to \tilde{\chi}$ is a bijection. Also, $[\chi_C, \widetilde{\chi}] \equiv \pm 1 \mod p$, and $[\chi_C, \theta] \equiv 0 \mod p$ for $\widetilde{\chi} \neq \theta \in \operatorname{Irr}(C)$. *Proof.* Let $\chi \in Irr_{S}(G)$ and $\theta \in Irr(C)$. Then

$$|C|\widetilde{\chi}(1)[\chi_C,\theta] = \widetilde{\chi}(1)\sum_{x\in C}\chi(x)\theta(x^{-1}) \equiv \chi(1)\sum_{x\in C}\widetilde{\chi}(x)\theta(x^{-1})$$
$$= \chi(1)[\widetilde{\chi},\theta]|C| \mod M.$$

Since p does not divide |C|, this gives $\tilde{\chi}(1)[\chi_C, \theta] \equiv \chi(1)[\tilde{\chi}, \theta] \mod p$. Since p does not divide $\tilde{\chi}(1)$, taking $\theta \neq \tilde{\chi}$, this gives $[\chi_C, \theta] \equiv 0 \mod p$, and taking $\theta = \tilde{\chi}$ gives

(1)
$$\widetilde{\chi}(1)[\chi_C, \widetilde{\chi}] \equiv \chi(1) \neq 0 \mod p$$

Thus $\tilde{\chi}$ is the unique irreducible consituent of χ_C with multiplicity not divisible by p.

Now let $\chi, \varphi \in \operatorname{Irr}_{S}(G)$. Then

$$|G|[\chi,\varphi] = \sum_{x \in G} \chi(x)\varphi(x^{-1}) \equiv \sum_{x \in C} \chi(x)\varphi(x^{-1}) = |C|[\chi_C,\varphi_C] \mod M$$

(using that χ, φ are S-invariant). Also, $|G| \equiv |C| \neq 0 \mod p$, and so $[\chi, \varphi] \equiv [\chi_C, \varphi_C] \mod p$.

Since $\chi_C = [\chi_C, \tilde{\chi}]\tilde{\chi} + p\Delta$ and $\varphi_C = [\varphi_C, \tilde{\varphi}]\tilde{\varphi} + pE$, we have that $[\chi, \varphi] = [\chi_C, \tilde{\chi}][\varphi_C, \tilde{\varphi}][\tilde{\chi}, \tilde{\varphi}] \mod p$. (2)

This shows that our map is injective.

If $\alpha \in \operatorname{Irr}(C)$ is not in the image of our map, then $[\chi_C, \alpha] = [\chi, \alpha^G] \equiv 0 \mod p$ for all $\chi \in \operatorname{Irr}_S(G)$. Since α^G is S-invariant, $[\alpha^G, \varphi^s] = [\alpha^G, \varphi]$ for all $\varphi \in \operatorname{Irr}(G)$, for all $s \in S$. This implies that p divides $\alpha^G(1)$, a contradiction.

Finally, taking $\chi = \varphi$ in (2), we get $1 \equiv [\chi_C, \tilde{\chi}]^2 \mod p$ and so $[\chi_C, \tilde{\chi}] \equiv \pm 1 \mod p$ as claimed.

ACKNOWLEDGMENT

The author wishes to express his gratitude to Professor I. M. Isaacs for his invaluable advice.

References

- 1. G. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465-1488.
- 2. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

Departamento de Algebra, Facultad de Ciencias Matemáticas, Universitat de Valencia, c/o Doctor Moliner, 50 Burjasot, Valencia, Spain