
ON THE GLAUBERMAN CORRESPONDENCE

GABRIEL NAVARRO

(Communicated by Warren J. Wong)

Abstract. In this paper we give an elementary proof of the p-group case of

Glauberman's correspondence.

1. INTRODUCTION

Let p be a prime number.

Let S be a p-group acting on a finite //-group G.  Let C = CG(S) and

lrrs(G) = {xe\n(G)\xs = X. V* G S} .
It is well known that the map K —► Kn C defines a bijection from the set of

S-invariant conjugacy classes of G onto the set of conjugacy classes of C [2,

13.10].
Let R be the full ring of algebraic integers in C, let M be a maximal

ideal of R containing pR, and set F = R/M. Let *:R —» F the canonical

homomorphism.

For / G Irr(C7), the map defined on Z(F[G]) by X (K) = (O (K)* is an alge-

bra homomorphism from Z(F[G]) to F. Note that XX(K) = (x(x)\K\/x(l))*

for x e K.

2. TWO LEMMAS

2.1. Lemma. Let x € Irrs(C7). We define ôx:Z(F[C]) — F by setting ôx(kKc)

= (x(x)\K\lx(l))* for K  S-invariant conjugacy class of G and x e K n C.

Then ô   is an algebra homomorphism.

Proof. Since ôx(K?\C) = X (K), it suffices to show that

ôx(K^CK^C) = Xx(Kikj)

for K¡, Kj, S-invariant conjugacy classes of G.

Write Kx , ... ,Kh for the S-invariant conjugacy classes, and Kh+X x , ... ,

Kh+l,a¡.Kh+t.\ •■■■> Kh+, ,a,   f0r the reSt> Where Kh+JA.Kh+j \a,   ÍS an

S- orbit. Note that a; = pbj > 1 .
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It is clear that we can write

*A- E aukKk+ E V E *&>
/c=l.h 1=1./ m=\.at

Fix xkeKknC. Since ajjk = |{(x , y) G K¡ x #;.:x}> = xk}\* and |{(jc , y) G

Ki x AT:xy = xk}\ = \{(x ,y)eK¡nCx Kj nC:xy = xk}\ modp , we have

that tÇnCkftc = £,=1.ha^né-
Now, since X   is constant over each S-orbit, we have

*=1.A rWl.|

=      2^     aijkÁX(    k>
k=l.h

_

=   2^  aijksx(KknC)
*-i.A

fc«l.A

The following result is well known. We give the proof to make it clear that

no results on p-blocks are needed for this paper.

2.2. Lemma. Suppose p does not divide \G\. The maps X   for x s Irr(CT) are

distinct and are all the algebra homomorphisms from Z(F[G]) to F .

Proof.  F[G] is a direct sum of full matrix rings over F, so Z(F[G\) = F

where k = cl(G)\. There are thus k algebra homomorphisms Z(F[G]) —♦ F

and it is enough to show that the X   are distinct.

Let ex = x(l)¿ZgeGX(g~1)*g e Z(F[G\).   Then Xx(ex) = \G\* ¿ 0 and
X (e ) = 0 for x ¥" W ■ The result now follows.

3. The Glauberman correspondence

Notation. Given x € Irr5(G), since ô   is an algebra homomorphism Z(F[C]) -»

ere exists a uni

for x G C, we have

(x(x)\K\/x(l))* = (x(x)\KnC\/x(l))* ,    where K = ClG(x).

Since \K\ = |ÄTiC| =á 0 modp, this gives jf(l)^(x) = xWx(x) mod M, for
all x G C.

3.1.  Theorem. The map Irr5(C7) —* Irr(C) defined by x -* X is a bijection.

Also, [xc , x\ — ± 1 mod p, and [xc , 6] = 0 mod p for x ^ 6 e Irr(C).

/»too/. Let / G Irrs(C7) and 0 G Irr(C). Then

|C|*(l)fec ,d] = x(l)J2 X(x)d(x~x) =X(i)lZ x(x)d(x-x)
xec xec

= X(l)lX.Ö]\C\    modM.

F, it follows that there exists a unique x € Irr(C) such that ôx = X~. Thus
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Since p does not divide \C\, this gives jf(l)[^c,0] = X(^)[X ,d]modp.

Since p does not divide %( 1 ), taking 6 ± x, this gives [xc , 6] = 0 mod /> ,

and taking 9 = x gives

(1) ^(l)Uc>jr:] = ^(l)^0modp.

Thus x is the unique irreducible consituent of /c with multiplicity not divis-

ible by p.

Now let x . <P € Irr^G). Then

\G\[X,<P] = '£2x(x)<P(x~') = XT ̂(^i^C^-1) = iCIUc • «'el    modM
x€G x€C

(using that / , q> are S-invariant). Also, |G| a |C| ^ Omodp, and so [#,?»] =

[^c,r¿>c]modp.

Since #c = [^c ,£]£ + pà. and çjc = [ç>c , f]<p + pE,v/e have that [x ,<p] =

[Xc > X][<PC • &ÏÏX - $]    mod P • (2)
This shows that our map is injective.

If a G Irr(C) is not in the image of our map, then [xc , a] = [x , a ] =

Omodp for all x e Irr5(G). Since aG is S-invariant, [aG ,q>\ = [aG ,<p]

for all tp G Irr(C7), for all j g S. This implies that p divides a (1), a

contradiction.

Finally, taking x = <P in (2), we get 1 = [xc ,x]2modp and so [xc ,X\ =
± 1 mod p as claimed.
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