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ANALYTIC CONTINUATION

OF ARCHIMEDEAN WHITTAKER INTEGRALS

STEPHEN RALLIS AND DAVID SOUDRY

(Communicated by Larry J. Goldstein)

Abstract. We prove the analytic continuation of a certain family of Whit-

taker Archimedean integrals that arise as local factors of global L-functions

associated to the standard representation of certain classical groups.

Introduction

In this paper we use a variation of Wallach [W] to prove the meromorphic

continuation of a certain type of integrals. Our motivating example comes

from the construction in [PS-R] generalizing Andrianov's construction of the

L-function for Siegel modular forms [A]. The work in [PS-R] also explains the

local-global structure of Andrianov's proof by introducing a new principle which

enables us to get Euler products in some cases when there is no uniqueness of

some appropriate "Whittaker model". In this paper we are concerned with the

meromorphic continutation (in the Archimedean case) of integrals of such type

as those encountered in [PS-R]. Let us review the basic construction in [PS-R]

so that we can keep this example in mind.

Let G = Sp(n), the symplectic group of rank n, regarded as an algebraic

over Q (we take Q instead of a global field just for the sake of simplicity).

Assume that n is even. Let T e M(n ,Q) be symmetric and nondegenerate,

and 0T the orthogonal group of T. Consider the oscillator representation io (

which corresponds to the reductive dual pair (0T , Sp(rt)) and a fixed nontrivial

character y/ of Q\A ( A is the ring of adeles of Q ); a> may be realized on

S(M(n , A)), the space of Schwartz-Bruhat functions on M(n , A). For <fi m

S(M(n , A)), consider the 0-series

eT(g)=     Y.     <*(g)<t>(x),        geG(A).
x<EM(n ,Q)
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**

Let P be the parabolic subgroup (0*) of G, and let

E(g,s)=     J2    fiyg.s)
yeP(Q)\G(Q)

be a properly normalized Eisenstein series corresponding to the representation

Indp A) | det |i+"+ . See [PS-R] for the precise normalization. Let n be an

irreducible, automorphic, cuspidal representation of (7(A). Consider for a cusp

form q> in the space of n , the integral

/ <p(g)6T(g)E(g,s)dg.
JGtO)\G(A)IG(Q)\G(\)

For Re(j) large enough, this integral equals

/(*)-/ <pT(g)(o(g)<p(In)f(g,s)dg.
JN(K)\G{X)

Here N is the unipotent radical of P and

<pT(g)=( ys-'drTX^U1"    f\g)dX:
JSym"(Q)\Sym"(A) \\u      ln J     /

Let S be a large enough finite set of primes, containing oo, outside of which

all the data of I(s) is "unramified". Let Q be a finite set of primes of Q

containing S. Put

Ia(s)=  f <PT(g)co(g)<p(In)f(g,s)dg,
JN(Aa)\G(An)

J(s) = IJs).

Let <t> = ®<pp, f = (£)f„; then it is proved that for a prime p not in Q

L(i , Xt • s+j) *s tne standard L-function of np twisted by xT >trie quadratic

character associated to T (at the prime p ). Thus

I(s) = lim/n(s) = J(s)Ls(n,xT,s + 5)

where

Ls(n,xT,s+2-)= Yl L(np,XT,s + \).
P<tS

Next, it is possible to show that at the finite primes of S one can choose (¡> and

/ such that

m = f      <pT(g)co(g)<p00(in)f00(g,s)dg.
JN(K)\G(R)

By the Iwasawa decomposition J(s) has the form

/    H(k,s)foo(k,s)dk
JKoo
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where

H(k,s)= f <PT(gk)œ(k)<f,oo(g)\detg\s-x/2xT(detg)dg
JGL(n ,R)

(K is the maximal compact subgroup of G(Ä) ). Assuming that (¡> has the

form P(x)e~"ni xx), where P(x) is a polynomial in x (this is a stable sub-

space of (S(M(n , R)), under (¿»(K^)), it is easy to see that the meromorphic

continuation of J(s) is determined by that of

/ ^7-(é?)</'00(c?)l det gf~x/2 xT(det g) dg
JGL{n,R)

and even simpler, using the Cartan decomposition for GL(« , R), it is enough

to consider integrals of the form

(A) / X(noo(a)v)<p(a)as; a*--- asn"d'(ax ,...,an).
J ai.a„>\ ,ai>0

Here a = diag(axa2...an ,axa2...an_x , ... ,axa2 ,ax), v isa Kx-finite vector

in the space of n^ . X is a linear functional obtained as follows. Fix a vector

vp in the space of n for all (finite) primes, so that v is unramified for almost

all p. Let <pv be the cusp form corresponding to v <g> ((g) v ). Let í bea

matrix coefficient on K! = K^ n GL(« , R), then

(B) X(v)= [ (<pnooMv)T(I)c;(u)du,

<f> is in S(R").
The integral (A) converges absolutely for Re(sx) > 0 and all s2, ... ,sn . To

obtain meromorphic continuation in sx , we use a variation on Wallach's method

[W, Theorems 5.8 and 7.2]. For that we have to obtain an asymptotic expansion

of X(7ioo(a)v) in ax , determining an explicit dependence of the expansion on

a2, ... ,an. This is the main theorem of our paper. The basic property of X

that we need is that of certain moderate growth which is analogous to (7.1)

in [W]. The fact that the functional X in (B) is defined through the Fourier

coefficient q>T leads us to call the integrals in question "Whittaker integrals".

1. Notation

(a) G = GR, the real points of a reductive group G, defined over R. We as-

sume that G = G = H Ker x , X running over the continuous homomorphisms

of G into R*. Let & be the Lie algebra of G.

(b) K is the maximal compact subgroup of G, corresponding to k c &, the

fixed point of 0 , a Cartan involution of &. Consider the (-1) eigenspace of

6 , and in it let $?0 be the maximal subspace such that [^ ,s/Q] = 0.

(c) Let (p(&, sf0) be the set of roots of & relative to s/0 , <p+(& , s/0)—the

positive roots (with respect to some fixed order). Let J^ be the subalgebra of

^, spanned by the positive roots spaces. Denote by P0 the minimal parabolic

subgroup of G corresponding to /0;  P0 = {g e G\ Ad(g)J/"0 c J^}.   The
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unipotent radical of P0 is N0 = expy^.   A0 = expja^ is the connected com-

ponent of the center of MQ , the Levi part of PQ .

(d) (P ,A) denotes a standard parabolic pair. Thus P is a subgroup of G,

containing P0. Let P = MN be the Levi decomposition of P ; then A is

the connected component of the center of the Levi part M . Let j/,/cf

be the Lie algebras of A and N ; then jV = ® 6af. JV, where JVy = {X e

yy\[H ,X] = y(H)X, H es/}. Put 4>(P ,A) = {y estf*\jVy / 0}. We have

<p+(ê?,sf0) = <t>(P0,A0) and c¡>(P , A) C cj>(PQ , A^ .

2. The Theorem

2.1. Let (P ,A) be a standard parabolic pair, such that dimA = 1. Let {ax , ... ,

a¡} be the simple roots of <f>(PQ ,A0), andlet Hx , ... ,H¡ in s/Q satisfy a¡(H¡) =

S¡j ; i, j 4 1. ... , /. We may assume that sé = RHX. Let at = exp(-tHx ) and

a =

exp(53i"a'/•#/) for t ,tj > 0.   Clearly, a   lies in the closure of A^—the pos-

itive Weyl chamber, and a e Ker a x.

Let V be a finitely generated admissible (2* ,K) module, and (n ,ß?) an

admissible representation on a Hubert space %? such that V is isomorphic to

%?K, the subspace of AT-finite vectors of %?. We identify V = %?K. Let Vx be

the (7-module generated by V. Let X e V*, the algebraic dual of Vx , satisfy

the following conditions:

(1) For v e V, the function g >->■ X(n(g)v) is in C°°(G), and for g e G,

XeSr,

jt(Kn(gexptX)v))\l=0 = X(n(g)(X ■ v)).

(2) There is a ß G R, such that for A" G W(JV) and t; G F, there is a

polynomial /^ tl in / - 1 variables with positive coefficients satisfying

\X.X(n(ata)v)\<PXv(eh.e")eM'.

We put Px,M') = px.v(eh.**)•

Let <j>'p be the subset of roots y in <f>(PQ , /i0), such that the unipotent sub-

group corresponding to y lies in N. Let b be the maximal coefficient in the

expression y = ^2i=2 «,«,. when y runs over <j>  . Define

L(a')^(j[a'A

( a   is always in Ker a, DA^).
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2.2 Example. Let G = Sp(«), the symplectic group of rank n . Choose PQ = B,

the standard Borel subgroup

/: \

then

A0={

I xx

a =

\

xx, ... ,xn > 0}

*?).

The simple roots are a,, ... ,an where a"' = xj_xx¡ ' for i = 2, ... ,n and

a"1 = x2n, a e A0 . Let P = (*0 *t ). Then

A = ' *-'ô\x>0}'\ H(2/" -0lzeR}-

= {(„ if.'xem*.*)}.

Take

Jf

"■ = H'"v,).   »,-{*•-) j = 2, ... ,n ,

where

E =

'-'   0 ^

OJ

Clearly a,(Hj) = 8i} . We have
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and

a =

ix,

V

v«-i

i7

*,  > *2 - " ' - X„-i  ^ 1

Let F be the space of AT-finite vectors for a representation n, which is a

local component of an irreducible, automorphic cuspidal representation x of

Sp(« , A), A being the ring of adeles of Q. Let y/ be a nontrivial character

of Q\A and T a symmetric matrix in M(n , Q). For a cusp form y> in T,

consider the Fourier coefficient

NQ\NA

y/  '(tr TX)y>
X

I
g ) dx.

Fix a vector v    in the space of x for p-prime, so that v is unramified

for almost all p . Let <pv be the cusp form corresponding to v © (®p up),

where v e V. Define /\(v) = (<pv)T(I), for v e V. ¡\ certainly satisfies the

conditions (1), (2) in 2.1. Denote K' = Kn M, (P = MN), and let w(«) be

a matrix coefficient on K'. Put,

A(n) = /   f\(Tt(u)v)w(u)du.
JK1

It is easy to see that X  satisfies the conditions (1), (2) as well.

I\(n(g)v) and X(n(g)v) are bounded functions of g in G).

(Actually

2.3.   Put H = -H. .   We are at the situation of §7.2 of [W], where an'i •

asymptotic expansion is derived for X(n(at)v) as t tends to infinity. Our task

is to estimate the polynomials pi n(t ,v) of the expansion when v is replaced

by n(a')v .   So, we also consider the finite set Ek(P , V) of the eigenvalues

of H acting on the finitely generated admissible space  V/yV V.   For £ G

Ek(P ,V) ,H -t\ has a bounded degree d of nilpotence on V/JV V. We have

Ek+](P , V) -4(P, V) C {£ - a(Hx)\t: G Ek(P ,V),aecp(P, A)}

and so U~ i Ek{P , V) c {í-«|í G £,(/», V), n = 0,1,2 ,...}. Let z, , ... ,

zf G £'1(/>, V) be such that if z( - z   is a nonzero integer, then i = j, and

such that every ¿; in £■,(/*, V) has the form z. — «', « = 0,1.Arrange

{z( - n|l < / < e , 0 < n G Z} = {£, ,<^2, ...} so that Re^ > Re¿;2 > ■ ■ ■ .

Choose the indices I < Nx < N2< ■ ■ ■ as follows: A^, + 1 is the first such that

A^ + 1 is the first such that Re^^, < Rec;^^ etc.Re¿       < Re.?,
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2.4 Theorem. Let ¿¡ = ÇN ,   i >  1.   Let k = kN  >  1   be an integer such

that -k + ß < Re£- 1.   Then there exist t¡r , ... ,¿¡ri  depending on v and

k, and there exist polynomials in t, P,   k(t ,a ,v) with coefficients bounded by

Pk v(a')L (a), where Pk v(a) is a polynomial function with positive coefficients

depending on k , v, and such that for t > 0 and a e Ker a, n Aq ,

X(n(ata)v)-J2e'^P(r k(t,a,v
j=\

^e Pk,v(a)L   (fl)

where Pk v(a) is a polynomial function with positive coefficients depending on

k ,v.

Proof. Assume first that v eéV V, there is a polynomial Pk v(a) with positive

coefficients such that

(1)
ni    i       i\   m (Re{—l)írfc.   i, r,      i   i,
\X(n(ata )v)\ < ey L (a)Pkv(a).

Let X,.Xm be a basis of JV such that [H , Xx] = yi(H)X¡ for H in s/0.

Note that for H = H, y.(H) < -1. Write v = Y)AT, • •• X, v, ■ •■,. , then

\X(n(aid)v)\ < y£\X(Ad(ala)X.---Ad(ala)Xh-n(ala)v.---k)\

< e-k'Lk(a')Y,PXl -x,  v, -, (a')*"' = e{"-k)'Lk(a')Pk v(a)
■*—' 'I 'k■ •   'I      'k

<e(^-X)'Lk(a')PkA,(a').

From now on Pk v(d), PkX)v(d), Pk v(d) etc. will always denote a polynomial

function with positive coefficients. Now assume that v £ J^ V. Let qk : V —>

V/JV V be the natural projection.   Let vx = v and vx = qk(vx).vn =

qk(vn) be a basis for %f(sé)vx, and let B = (b¡¡) be the matrix of H such that

H •vi — Yl"j=\ bj.Vj. The eigenvalues of B are contained in Ek(P , V). We

have
" k

H-vi = z2buvj + wi-    wieJr v-
;'=i

So, putting

F(t,a',v)

we have

/X(n(ata')vx)\

\X(n(ata')vn))

G(t,d ,v)

' X(n(ata')wx)

^X(n(ata')wn)

^-F(t, a! , v) = BF(t, a , v) + G(t, a , v).
dt   K ' '       v '

Solving, we get

(2) F(t,a ,v) = e'BF(0,a ,v) + e'B / e~xBG(x ,d ,v)dx.
Jo
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Let £fx,£r , ... ,£r¡ be the eigenvalues of B on C" arranged such that

Rec;,. > Re£ > ••• _> Re£r . Let P} be the projection of C" on the £r

generalized eigenspace. Put Q = VJr >s¡ P} and i? = £f <Nl Pj> Q + R = !„■

We first estimate that there is Pk v(a!) such that

(3) \Q(F(t ,d ,v))\\<e'KetPk^(a!)Lk(d).

Let ueC" . Since P. commutes with B, we have

||P,W))|| = ||e'V,.(u))|| < PB(t)e Rcir'\\u\\,

PB(t) is a fixed polynomial depending on B  (and hence on v ).   Since, for

r. > N-, we have Re¿;r   < Re£,  (£ = ÇN.), then there is a constant Ck v

such that Erj>N,PB(t)e!Reir> < CkvetRei. Thus, letting {ex.en} be the

standard basis of C" , we get

n

Hßr/V(o,u',«))|| < Y,\xWa')vMQ{e'BÍO)W
«/=1

^Ew«V^<e'^>')
1/=1

.    íRe{n(I),   'NrA'/   is

(/^ „ (a) satisfies \X(n(d)vv)\ < Pk v (a)). Similarly, using (1) and the fact

that «j^GyfV.we find that there is P(k2)v(d) such that

QÍe'B Íe~xBG(x,d ,v)dx) <e'ReiPkmv(a')Lk(a').

This proves (3). Now let r. < N,. Note that Reí   > Re¿;. As before, there is

a polynomial Pk3l(d) such thatk ,v\

m ,   -xB „, I       ,,,,    ,    (fi-k-Rei)r _(3) ,   'sTk,   's
\Pj(e     G(x,a ,v))\\ < ey» Pk\'v(a )L (a )

..     _T n(3) /   i\Tk ,   Is

<e   Pk\'v(a)L (a).

This shows that I(d ,v) = /0°°R(e T G(x,d ,v))dx converges absolutely.

Put F°(t, a , v) = R(e'B(F(0 ,d ,v) +1 (a , v))), then as before,

||*(F(r,a',v)) - F°(t ,d ,v)\\< Lk(a')Pkwv(d)PB(t)

x ¿2e
r,<N,

/Reí, 1°° PB(x)e{"-k-Reí^ dx

/oo e{u-k-Rei>>+X)* dx

= Lk(d)P(kl(a')e(^k+X)' < Lk(a')Pk{5l(a')e,Rei.
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(4) \\F(t ,d,v)- F°(t, d , v)\\ < e'ReiPk jd)Lk(d)

This last estimate and (3) show that there is a polynomial Pk v(d) such that

(Reel could be replaced by Re¿¡ - e for some e > 0 ).

Let yi(t ,d,v) be the first coordinate of F°(t ,d,v); then (4) implies that

for v i yVk V

(5) \X(n(atd)v) - yv(t,d ,v)\ < e'ReiPk,v(d)Lk(d).

Extend y/(t, a , v) to be zero on/ F, and (5) is still true because of (1). It

remains to note that by definition

(6) y/(t,d ,v) = Y/e'i,JPi  ,k(t,d,v)
%

where P£   ¡(t ,d ,v) are polynomials in t (zero polynomials for veJV V),

with coefficients ß(d ,v) satisfying \ß(d ,v)\ < Pk v(d)L (a) for some poly-

nomial function Pk v on KercCjO^Q.    D

2.5 Corollary. Assume that X satisfies a similar condition to (2) of 2.1 also for

t < 0. Let <f> G S(R ), the Schwartz-Bruhat functions on R', then

f  _ H X(7i(ald)v)<P(e-', dai,..., da')e-Slt • • • {a"1)* dt da
Ja'EA* J-oo

converges for Re(i1) > 0 and all s2, ... ,s¡ and it has a meromorphic continu-

ation in sx.

Proof. For the integration over 0 < t apply (5) and (6) of the proof in (2.4).

For the integration over t < 0, there is no problem of convergence by our

assumption on X and the presence of <f> in the integral.

2.6. Going to the example explained in the Introduction, we obtain (using

the notation there)

Corollary. The integral

I y>T(g)<p00(g)\detg\s-X/2xT(detg)dg
JGL(n ,R)

(which converges absolutely for Re(s) » 0 ) admits a meromorphic continuation

to the whole plane.
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