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MUTATION OF KNOTS

C. KEARTON

(Communicated by Haynes R. Miller)

Abstract. In general, mutation does not preserve the Alexander module or the

concordance class of a knot.

For a discussion of mutation of classical links, and the invariants which it

is known to preserve, the reader is referred to [LM, APR, MT]. Suffice it here

to say that mutation of knots preserves the polynomials of Alexander, Jones,

and Homfly, and also the signature. Mutation of an oriented link k can be

described as follows. Take a diagram of k and a tangle T with two outputs

and two inputs, as in Figure 1.

Figure 1 Figure 2

Rotate the tangle about the east-west axis to obtain Figure 2, or about the

north-south axis to obtain Figure 3, or about the axis perpendicular to the paper

to obtain Figure 4. Keep or reverse all the orientations of T as dictated by the

rest of k . Each of the links so obtained is a mutant of k.

The reverse k' of a link k is obtained by reversing the orientation of each

component of k. Let us adopt the convention that a knot is a link of one

component, and that k + I denotes the connected sum of two knots k and /.

Lemma. For any knot k, the knot k + k' is a mutant of k + k.
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Figure 3 Figure 4

Proof. Shrink one of the summands in k + k to a small knot, and arrange

a diagram of k + k to have a tangle as in Figure 5. Rotate about the axis

perpendicular to the page, to obtain Figure 6, which represents k + k . Note

that whatever convention we make about orientations, we always obtain

k+k'.   Q.E.D.

2J

Figure 5 Figure 6

By a result of C. Livingston [L], there exist knots k which are not concordant

to their reverses k'. It follows at once that k + k is not concordant to k + k',

and hence that mutation does not preserve the concordance class in general. I

should like to thank Cameron Gordon for reminding me of Livingston's result.

In [K] there is an example of a knot k , in fact the pretzel knot (25,-3,13),

whose Steinitz-Fox-Smythe row ideal class p does not satisfy p = 1. The row

ideal class of k! , as pointed out in [K], is x, the column ideal class of k . Of

course, px = 1, and so we see that the row ideal class of k + k is p j= 1,

whereas the row ideal class of k + k' is px — 1. Thus we have an example in

which the knot module of k + k is not isomorphic to that of k + k'. Another

example can be obtained from [BHK, §4], and other examples can be found

using [B] and number theory tables.
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