THREE-SPACE PROBLEMS FOR THE APPROXIMATION PROPERTIES

GILLES GODEFROY AND PIERRE DAVID SAPHAR

(Communicated by William J. Davis)

ABSTRACT. Let M be a closed subspace of a Banach space X. We suppose that M has the B.A.P. and that M^{\perp} is complemented in X^* . Then, if X/M has the B.A.P. (resp. the A.P.), the space X has the same property. There are similar results if M is an \mathcal{L}_{∞} space. If X/M is an \mathcal{L}_{\parallel} space, then X has the B.A.P. if and only if M has the B.A.P. We notice that the quotient algebra L(H)/K(H) (H infinite-dimensional Hilbert space) does not have the A.P.

1. Introduction

Let X be a Banach space, and M a closed subspace of X. Assume that the spaces M and X/M have the bounded approximation property (B.A.P.); what can be said about X? It is known that this does not imply in general that X the approximation property (A.P.); Indeed W. B. Johnson and H. P. Rosenthal have shown in [6] that every separable space X contains a subspace M such that both M and X/M have a finite-dimensional decomposition. More recently, W. Lusky in [12] has shown that if X is separable and contains a subspace isomorphic to c_0 , then there exists a subspace M of X with a basis such that X/M has a shrinking basis. However, some positive results can be obtained under simple additional assumptions.

A typical result is the following: If M is a closed subspace of a Banach space X such that M^{\perp} is complemented in X^* , and if X/M has the B.A.P., then X has the B.A.P. if and only if M has the B.A.P. We also show that if M is an \mathcal{L}_{∞} space and X/M has the A.P. (resp. the B.A.P.), then X has the A.P. (resp. the B.A.P.). On the other hand, if X/M is an \mathcal{L}_{1} space, X has the B.A.P. if and only if M has the B.A.P. We deduce from Szankowski's result [13], that the quotient algebra L(H)/K(H) (H infinite-dimensional Hilbert space) does not have the A.P.

Notations. The space of bounded operators of a Banach space X is denoted by L(X), and the space of finite rank operators by R(X). For two Banach spaces

Received by the editors December 1, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46B20.

Key words and phrases. approximation property, three-space problem, extension of finite rank operators.

X and Y, the tensor product $X\otimes Y$ endowed with the projective norm π and completed will be denoted $X\otimes_{\pi}Y$. If X^* is the dual of X, the w^* -topology on $L(X^*)$ is the topology of pointwise convergence on the canonical predual $X^*\otimes_{\pi}X$ of $L(X^*)$. The topology w_{op}^* on $L(X^*)$ is the topology of pointwise convergence on the algebraic tensor product $X^*\otimes X$. Our reference on the approximation properties (originally defined in [4]) is [11, Section 1.e]. The \mathscr{L}_1 and \mathscr{L}_{∞} spaces are defined and studied in [10].

2. RESULTS

Our first lemma is a classical perturbation argument (see [2]).

Lemma 2.1. Let X be a Banach space. Then:

- (1) X has the A.P. if and only if Id_{X^*} belongs to the closure of $R(X^*)$ in $(L(X^*), w^*)$;
- (2) X has the B.A.P. if and only if there exists $\lambda > 0$ such that Id_{X^*} belongs to the closure of $\{R\,; R\in R(X^*)\,, \ \|R\|\leq \lambda\}$ in $(L(X^*)\,, w_{\operatorname{op}}^*)$ (or in $(L(X^*)\,, w^*)$). Proof. (1) Assume that X has the A.P. Let (R_α) be a net of finite rank operators from X into X such that $R_\alpha \to \operatorname{Id}_X$ for the topology τ_k of compact convergence. By [11, Proposition 1.e.3] one has $\phi(R_\alpha) \to \phi(\operatorname{Id}_X)$ for every $\phi \in X^* \otimes_\pi X$; hence $R_\alpha^* \overset{w^*}{\to} \operatorname{Id}_{X^*}$.

Assume conversely that Id_{X^*} belongs to the closure of $R(X^*)$ in $(L(X^*), w^*)$. Let $U \in R(X^*)$. One verifies easily that there exists a net (T_α) in R(X) such that $T_\alpha^* \overset{w^*}{\to} U$. Thus, there exists a net (V_α) in R(X) such that $V_\alpha^* \overset{w^*}{\to} \operatorname{Id}_{X^*}$. Hence, V_α converges to Id_X for the weak topology of $(L(X), \tau_k)$ and a convex combination argument shows that X has the A.P.

(2) If X has the B.A.P., it is clear that there exists $\lambda > 0$ such that Id_{X^*} belongs to the closure of $\{R; R \in R(X^*), \|R\| \leq \lambda\}$ in $(L(X^*), w^*)$. The converse is exactly Theorem 1 of [2].

Observe finally that by compactness, the topologies w^* and w_{op}^* coincide on the bounded subsets of $L(X^*)$. \square

The next results will show the main tools for obtaining positive results in the "three-space" situation.

Lemma 2.2. Let X be a Banach space, and M a closed subspace of X such that X/M has the A.P. If there exists a bounded net (T_{α}) in R(X) such that

$$\langle T_{\alpha}(x), x^* \rangle \rightarrow \langle x, x^* \rangle$$
 for each $x \in M$ and each $x^* \in X^*$,

then X has the A.P.

Proof. The net (T_{α}^*) is a bounded net in the dual space $L(X^*)$. Let U be a w^* -cluster point of (T_{α}^*) . Clearly $\langle x, U(x^*) \rangle = \langle x, x^* \rangle$ for each $x \in M$ and each $x^* \in X^*$. Then, if j is the canonical map from M^{\perp} to X^* , there exists an operator D from X^* to M^{\perp} such that $U - \operatorname{Id}_{X^*} = jD$.

By assumption, X/M has the A.P., hence there is a net (S_{β}) in R(X/M) such that (S_{β}^{*}) satisfies $S_{\beta}^{*} \stackrel{w^{*}}{\to} \operatorname{Id}_{M^{\perp}}$ in $L(M^{\perp})$. If we let $V_{\beta} = jS_{\beta}^{*}D$, we have $V_{\beta} \stackrel{w^{*}}{\to} jD$ in $L(X^{*})$. This shows that $\operatorname{Id}_{X^{*}} = U - jD$ belongs to the w^{*} -closure of the set $(T_{\alpha}^{*} - V_{\beta})$; hence by 2.1(1), X has the A.P. \square

In the case where X/M is assumed to have the B.A.P., we can state

Lemma 2.3. Let X be a Banach space and M a closed subspace of X such that X/M has the B.A.P. Then the following are equivalent:

- (1) X has the B.A.P.;
- (2) There exists a bounded net (T_{α}) in R(X) such that

$$\forall x \in M$$
, $\forall x^* \in X^*$, $\langle T_{\alpha}(x), x^* \rangle \rightarrow \langle x, x^* \rangle$.

Proof. $(1) \Rightarrow (2)$ is clear by restriction.

 $(2) \Rightarrow (1)$. We repeat the proof of 2.2 with the same notation. Since X/M has the B.A.P., the net (S_{β}) may be taken bounded; then (V_{β}) is bounded and Id_{X^*} is in the w^* -closure of a bounded subset of $R(X^*)$. We conclude by 2.1(2). \square

Let us now state the main result of this note.

Theorem 2.4. Let X be a Banach space, and M a closed subspace of X such that M^{\perp} is complemented in X^* . Then we have:

- (1) If X has the A.P. (resp. the B.A.P.), M has the A.P. (resp. the B.A.P.);
- (2) If M has the B.A.P., then

X/M has the A.P. implies that X has the A.P.,

X/M has the B.A.P. implies that X has the B.A.P.

PROOF. Let i be the canonical map from M to X. Since M^{\perp} is complemented in X^* , there exists an operator σ from M^* to X^* such that $i^*\sigma=\mathrm{Id}_{M^*}$.

- (1) Let (T_{α}) be a net in $R(X^*)$ such that $T_{\alpha} \stackrel{w^*}{\to} \operatorname{Id}_{X^*}$ in $L(X^*)$. We consider the operators $W_{\alpha} = i^*T_{\alpha}\sigma$; it is clear that $W_{\alpha} \in R(M^*)$ and that $W_{\alpha} \stackrel{w^*}{\to} \operatorname{Id}_{M^*}$ in $L(M^*)$. Moreover, $\|W_{\alpha}\| \leq \|T_{\alpha}\| \|\sigma\|$. Hence, the net (W_{α}) is bounded if (T_{α}) is bounded. Lemma 2.1 concludes the proof.
- (2) Let (R_{α}) be a bounded net in R(M) such that $R_{\alpha}m \to m$, for every $m \in M$. Each operator (R_{α}) can be written

$$R_{\alpha} = \sum_{t=1}^{n(\alpha)} m_{t,\alpha}^* \otimes m_{t,\alpha}^{}$$
 , $m_{t,\alpha}^* \in M^*$, $m_{t,\alpha} \in M$.

We define $S_{\alpha} \in R(X)$ by

$$S_{\alpha} = \sum_{t=1}^{n(\alpha)} \sigma(m_{t,\alpha}^*) \otimes m_{t,\alpha}.$$

It is clear that for every $m \in M$ and every $x^* \in X^*$

$$\langle S_{\alpha}(m), x^* \rangle = \langle R_{\alpha}(m), x^* \rangle \rightarrow \langle m, x^* \rangle.$$

Moreover, $\|S_{\alpha}\| \leq \|\sigma\| \cdot \|R_{\alpha}\|$, and the net (S_{α}) is bounded. Now Lemmas 2.2 and 2.3 conclude the proof. \square

We describe now a few consequences of this result. Our first observation deals with subspaces of X containing M.

Corollary 2.5. Let M and Y be two subspaces of X such that $M \subset Y \subset X$. Suppose M^{\perp} is complemented in X^* . Then, the orthogonal of M in Y^* is complemented in Y^* . Hence if M does not have the A.P. (resp. the B.A.P.), no space Y between M and X has the A.P. (resp. the B.A.P.).

Proof. If we write $X^* = M^{\perp} \oplus Z$ then we have

$$Y^* = X^*/Y^{\perp} = (M^{\perp}/Y^{\perp}) \oplus Z$$

and the space M^{\perp}/Y^{\perp} is precisely the orthogonal of M in Y^* . The conclusion follows by 2.4(1). \square

Example 2.6. Let X be a Banach space, and $G = X^U$ an ultrapower of X (see,

for instance [1 or 5]). If $x = (x_i)$ is an element of G, we can define a map σ from X^* to G^* by $\langle x, \sigma(f) \rangle = \lim_U (\langle x_i, f \rangle)$ for each f of X^* . It is clear that σ is a right inverse of the canonical map from G^* to X^* . Then X^{\perp} is complemented in G^* . Hence, Theorem 2.4 applies to this situation. Let F be a subspace of G such that $X \subset F \subset G$; by Corollary 2.5 we obtain that if X does not have the A.P. (resp. the B.A.P.), it is the same for F. For a similar connection between finite representability and extensions, see [8].

The above applies for instance to any Banach space F such that $X \subset F \subset X^{**}$. In the case $F = X^{**}$, we can deduce from [7] more precise results, namely:

Corollary 2.7. Let X be a Banach space. Let us call (P) one of the properties:

- (i) Y has a basis;
- (ii) Y has an F.D.D.;
- (iii) Y is a π -space (see [7, p. 489]);
- (iv) Y has the B.A.P.

Then if X and X^{**}/X have (P), X^{**} and X^{*} have (P).

PROOF. If X and X^{**}/X have the B.A.P., then X^{**} has the B.A.P. by 2.4(2), and thus X^{*} has the B.A.P. [11, Theorem 1.e.7] and (iv) is proved. Now the conclusion follows:

- (a) if (P) is (i), from [7, Theorem 1.4.(b)];
- (b) if (P) is (ii), from [7, Theorem 1.3)];
- (c) if (P) is (iii), from [7, Corollary 4.8).]

The next observation is a consequence of an important result of Szankowski (see [13]).

Corollary 2.8. Let H be an infinite-dimensional Hilbert space, and K(H) be the space of compact operators on H. Then the quotient algebra L(H)/K(H) does not have the A.P.

Proof. Since $L(H) = K(H)^{**}$, $K(H)^{\perp}$ is complemented in $L(H)^{*}$. The space K(H) has the B.A.P. On the other hand, by [13], L(H) does not have the A.P. Therefore, 2.4(2) concludes the proof. \square

Let us finally show

Corollary 2.9. Let M be a closed subspace of the Banach space X. Then:

- (1) If M is an \mathcal{L}_{∞} space and X/M has the A.P. (resp. the B.A.P.), then X has the A.P. (resp. the B.A.P.);
- (2) If X/M is an \mathcal{L}_1 space, then X has the B.A.P. if and only if M has the B.A.P.
- *Proof.* (1) If M is an \mathscr{L}_{∞} space (see [10]), then M has the B.A.P. Moreover, there exists a constant K such that every finite rank operator $R \colon M \to M$ admits an extension $\widetilde{R} \colon X \to M$ of finite rank, with $\|\widetilde{R}\| \le K$. $\|R\|$. Hence there exists a bounded net (T_{α}) in R(X) such that $(T_{\alpha}(x))$ converges weakly to X for every $X \in M$. Lemmas 2.2 and 2.3 conclude the proof.
- (2) If X/M is an \mathcal{L}_1 space, then M^{\perp} is a dual \mathcal{L}_{∞} space and thus M^{\perp} is complemented in X^* . Moreover, X/M has the B.A.P. The result now follows by 2.4. \square

Remarks. (1) Let E be a separable Banach space. By [9], there exists a space Y such that Y^{**} has a basis and Y^{**}/Y is isomorphic to E. If we choose E to be a separable Banach space without the A.P. (see [3]), we have an example of a couple of spaces Y = M, $Y^{**} = X$ such that M^{\perp} is complemented in X^* , X and M have the B.A.P. but X/M does not have the A.P. (2) There is apparently no known example of a Banach space X with the A.P. containing a closed subspace M without the A.P., but such that X/M has the A.P. (3) If M is an M-ideal in X, then obviously M^{\perp} is complemented in X^* and thus 2.4 applies. Let us mention that under that assumption if X/M is separable and has the B.A.P., then M is complemented in X (see [14]).

REFERENCES

- B. Beauzamy, Introduction to Banach spaces and their geometry, North-Holland Math. Studies, 68, Notas Math., 1982.
- D. Dean, Approximations and weak star approximation in Banach spaces, Bull. Amer. Math. Soc. 79 (1973), 725-728.
- 3. P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317.
- 4. A. Grothendieck, *Produits tensoriels topologiques et espaces nucléaires*, Mem. Amer. Math. Soc. no. 16 (1955).
- 5. S. Heinrich, Ultra products in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104.
- 6. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77-92.

- 7. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.
- 8. A. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113.
- 9. J. Lindenstrauss, On James' paper "separable conjugate spaces", Israel J. Math. 9 (1971), 279-284.
- 10. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325-349.
- 11. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Springer Verlag, 1977.
- 12. W. Lusky, A note on Banach spaces containing c_0 or C_{∞} , J. Funct. Anal. 62 (1985), 1-7.
- A. Szankowski, B(H) does not have the approximation property, Acta Math. 147 (1981), 1-2, 89-108.
- 14. T. Ando, A theorem on nonempty intersection of convex sets and its application, J. Approx. Theory 13 (1975), 158-166.

Equipe d'Analyse Université Paris VI, Tour 46-0.4 $^{\circ}\,$ étage, 4 Place Jussieu, 75230 Paris Cedex 05, France

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000 Israel