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Abstract. Let M be a closed subspace of a Banach space X . We suppose

that M has the B.A.P. and that M1- is complemented in X* . Then, if X/M

has the B.A.P. (resp. the A.P.), the space X has the same property. There are

similar results if M is an 5Cqo space. If X/M is an £fx space, then X has

the B.A.P. if and only if M has the B.A.P. We notice that the quotient algebra

L(H)/K(H) ( H infinite-dimensional Hubert space) does not have the A.P.

1. Introduction

Let X be a Banach space, and M a closed subspace of X . Assume that the

spaces M and X/M have the bounded approximation property (B.A.P.); what

can be said about X ? It is known that this does not imply in general that X the

approximation property (A.P.); Indeed W. B. Johnson and H. P. Rosenthal have

shown in [6] that every separable space X contains a subspace M such that

both M and X/M have a finite-dimensional decomposition. More recently,

W. Lusky in [12] has shown that if X is separable and contains a subspace

isomorphic to c0 , then there exists a subspace M of X with a basis such that

X/M has a shrinking basis. However, some positive results can be obtained

under simple additional assumptions.

A typical result is the following: If M is a closed subspace of a Banach space

X such that M is complemented in X*, and if X/M has the B.A.P., then

X has the B.A.P. if and only if M has the B.A.P. We also show that if M is

an J?^ space and X/M has the A.P. (resp. the B.A.P.), then X has the A.P.

(resp. the B.A.P.). On the other hand, if X/M is an i?j space, X has the

B.A.P. if and only if M has the B.A.P. We deduce from Szankowski's result

[13], that the quotient algebra L(H)/K(H) (H infinite-dimensional Hubert

space) does not have the A.P.

Notations. The space of bounded operators of a Banach space X is denoted by

L(X), and the space of finite rank operators by R(X). For two Banach spaces
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X and Y, the tensor product X®Y endowed with the projective norm n and

completed will be denoted 18^7. If X* is the dual of X, the uAtopology

on L(X*) is the topology of pointwise convergence on the canonical predual

X* <8>n X of L(X*). The topology w* on L(X*) is the topology of pointwise

convergence on the algebraic tensor product X* ® X. Our reference on the

approximation properties (originally defined in [4]) is [11, Section l.e]. The

=S^ and .2^ spaces are defined and studied in [10].

2. Results

Our first lemma is a classical perturbation argument (see [2]).

Lemma 2.1. Let X be a Banach space. Then:

(1) X has the A.P. if and only if Idx,  belongs to the closure of R(X") in

(L(X*),w*);

(2) X has the B.A.P. if and only if there exists X > 0 such that Id^.» belongs to

theclosureof{R;ReR(X*), ||Ä||<A} in (L(X*),w*op) (orin (L(X*) ,w*)).

Proof. (1) Assume that X has the A.P. Let (Ra) be a net of finite rank oper-

ators from X into X such that Ra —► Id^ for the topology rk of compact

convergence. By [11, Proposition l.e.3] one has 4>(Ra) —* (p(ldx) for every

(f> € X* ®n X ; hence Ä* tí Id^. .

Assume conversely that \áx. belongs to the closure of R(X*) in (L(X*),

w*).   Let  U G R(X*).   One verifies easily that there exists a net  (Ta)  in

R(X) such that T* tí {/. Thus, there exists a net (KJ in 7Î(X) such that

V* ^+ Id^. . Hence, Fr> converges to Id^ for the weak topology of (L(X), xk)

and a convex combination argument shows that X has the A.P.

(2) If X has the B.A.P., it is clear that there exists A > 0 such that Id^..

belongs to the closure of {R;R e R(X*), \\R\\ < X} in (L(X*),w*). The

converse is exactly Theorem 1 of [2].

Observe finally that by compactness, the topologies w* and w* coincide

on the bounded subsets of L(X*).   D

The next results will show the main tools for obtaining positive results in the

"three-space" situation.

Lemma 2.2. Let X be a Banach space, and M a closed subspace of X such

that X/M has the A.P. If there exists a bounded net (Ta) in R(X) suchthat

(Tn(x), **) —» (* , **)    for each x G M and each x* e X*,

then X has the A.P.

Proof. The net (T*) is a bounded net in the dual space L(X*). Let U be a

u;*-cluster point of (T*). Clearly (* , U(x*)) = (* ,**) for each * e M and

each ** e X*. Then, if j is the canonical map from M to X*, there exists

an operator D from X* to M    such that U - Id^. = jD .
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By assumption, X/M has the A.P., hence there is a net (S„) in R(X/M)

such that (Si) satisfies Si ^ IdM± in L(M  ). If we let V„ = jS*„D , we have

Vg ̂ + jD in L(X*). This shows that Id^. = U-jD belongs to the wAclosure

of the set (T* - Vß) ; hence by 2.1(1), X has the A.P.   D

In the case where X/M is assumed to have the B.A.P., we can state

Lemma 2.3. Let X be a Banach space and M a closed subspace of X such that

X/M has the B.A.P. Then the following are equivalent:

(1) X has the B.A.P.,;
(2) There exists a bounded net (Ta) in R(X) such that

V* € M , V** 6 X* , (Ta(x$,X*)-> (*,**>.

Proof. (1) =>• (2) is clear by restriction.

(2) => (1). We repeat the proof of 2.2 with the same notation. Since X/M

has the B.A.P., the net (S„) may be taken bounded; then (Vg) is bounded

and Idx. is in the tu "-closure of a bounded subset of R(X*). We conclude by

2.1(2).     G

Let us now state the main result of this note.

Theorem 2.4. Let X be a Banach space, and M a closed subspace of X such

that M    is complemented in X*. Then we have:

(1) If X has the A.P. (resp. the B.A.P.), M has the A.P. (resp. the B.A.P.);
(2) If M has the B.A.P., then

X/M has the A.P. implies that X has the A.P.,

X/M has the B.A.P. implies that X has the B.A.P.

Proof. Let / be the canonical map from M to X. Since M is com-

plemented in X*, there exists an operator a from M* to X* such that

Ca = Idw. .

(l)Let (Tn) be a net in R(X*) suchthat r tí Id^. in L(X*). We consider

the operators Wa = i*Taa ; it is clear that Wa e R(M*) and that Wa ^» Idw,

in L(M*). Moreover, \\WJ\ < \\TJ\ \\a\\. Hence, the net (Wa) is bounded if

(Ta) is bounded. Lemma 2.1 concludes the proof.

(2) Let (RJ be a bounded net in R(M) such that Ram —► m, for every

m e M. Each operator (Ra) can be written

«(«)

R   =\^m*   <8>m.    ,        m*   eM*,m,    gM.
n        /  -■      i ,a t ,a t ,a '      t ,a

t=\

We define S e R(X) by"

S  =Yo(m*  )®m,   .
a '    *     \      I ,a' I ,a

(=1
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It is clear that for every m e M and every ** € X*

(Sa(m),x*) = (Ra(m),x*)^(m,x*).

Moreover, \\SJ\ < ||<r|| • ||7?Q||, and the net (Sa) is bounded. Now Lemmas 2.2

and 2.3 conclude the proof,     a

We describe now a few consequences of this result. Our first observation

deals with subspaces of X containing M.

Corollary 2.5. Let M and Y be two subspaces of X such that M c Y c X.

Suppose M is complemented in X*. Then, the orthogonal of M in Y* is

complemented in Y*. Hence if M does not have the A.P. (resp. the B.A.P.),

no space Y between M and X has the A.P. (resp. the B.A.P.).

Proof. If we write X* = M± © Z then we have

Y* = X*/YX = (M±/Y±)®Z

and the space M /Y is precisely the orthogonal of M in Y*. The conclusion

follows by 2.4(1).   D

Example 2.6. Let X be a Banach space, and G = X    an ultrapower of X (see,

for instance [1 or 5]). If * = (*() is an element of G, we can define a map a

from X* to G* by (*,o(f)) = lim(7((*/,/)) for each / of X*. It is clear

that a is a right inverse of the canonical map from C7* to I". Then X is

complemented in G*. Hence, Theorem 2.4 applies to this situation. Let F be

a subspace of G such that X c F c G; by Corollary 2.5 we obtain that if X

does not have the A.P. (resp. the B.A.P.), it is the same for F . For a similar

connection between finite representability and extensions, see [8].

The above applies for instance to any Banach space F such that X c F c

X**. In the case F — X**, we can deduce from [7] more precise results,

namely:

Corollary 2.7. Let X be a Banach space. Let us call (P) one of the properties:

(i) Y has a basis;

(ii)  7 has an F.D.D.;

(iii)  Y is a n-space (see [7, p. 489]);

(iv)  Y hastheBA.P.

Then if X and X**/X have (P), X" and X* have (P).

Proof. If X and X"/X have the B.A.P., then X" has the B.A.P. by 2.4(2),
and thus X* has the B.A.P. [11, Theorem l.e.7] and (iv) is proved. Now the

conclusion follows:

(a) if (P) is (i), from [7, Theorem 1.4.(b)];

(b) if (P) is (ii), from [7, Theorem 1.3)];

(c) if (P) is (iii), from [7, Corollary 4.8).]   D

The next observation is a consequence of an important result of Szankowski

(see [13]).
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Corollary 2.8. Let H be an infinite-dimensional Hubert space, and K(H) be

the space of compact operators on H. Then the quotient algebra L(H)/K(H)

does not have the A.P.

Proof. Since L(H) = K(H)** ,K(H)± is complemented in L(H)*. The space

K(H) has the B.A.P. On the other hand, by [13], L(H) does not have the A.P.

Therefore, 2.4(2) concludes the proof.   G

Let us finally show

Corollary 2.9. Let M be a closed subspace of the Banach space X. Then:

(1) If M is an £?x space and X/M has the A.P. (resp. the B.A.P.), then X

has the A.P. (resp. the B.A.P.);

(2) If X/M is an ^ space, then X has the B.A.P. if and only if M has the
B.A.P.

Proof. (1) If M is an 5?x space (see [10]), then M has the B.A.P. Moreover,

there exists a constant K such that every finite rank operator R: M —► M

admits an extension R: X —> M of finite rank, with ||j?|| < K. \\R\\. Hence

there exists a bounded net (Ta) in R(X) suchthat (Ta(x)) converges weakly

to * for every x e M. Lemmas 2.2 and 2.3 conclude the proof.

(2) If X/M is an .2^ space, then M is a dual Jz^ space and thus M is

complemented in X*. Moreover, X/M has the B.A.P. The result now follows

by 2.4.   a

Remarks. (1) Let E be a separable Banach space. By [9], there exists a space

Y suchthat Y** has a basis and Y**/Y is isomorphic to E. If we choose E

to be a separable Banach space without the A.P. (see [3]), we have an example

of a couple of spaces Y = M, Y** = X such that M is complemented in

X*, X and M have the B.A.P. but X/M does not have the A.P. (2) There is

apparently no known example of a Banach space X with the A.P. containing

a closed subspace M without the A.P., but such that X/M has the A.P. (3) If

M is an M -ideal in X, then obviously M is complemented in X* and thus

2.4 applies. Let us mention that under that assumption if X/M is separable

and has the B.A.P., then M is complemented in X (see [14]).
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