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POINT DERIVATIONS ON FUNCTION ALGEBRAS

GENERATED BY HOLOMORPHIC FUNCTIONS

R. G. M. BRUMMELHUIS AND P. J. DE PAEPE

(Communicated by Paul S. Muhly)

Abstract. It is shown that a continuous point derivation on the algebra H(X)

consisting of uniform limits on X of functions holomorphic in a neighborhood

of a compact subset X in C" , which vanishes on the polynomials is the trivial

derivation.

1. Introduction

Let A' be a compact Hausdorff space. A function algebra B on X is a point

separating sup norm closed subalgebra of C(X) (the algebra of all complex-

valued continuous functions on X ) containing the constant functions on X.

AB will denote the maximal ideal space of B, i.e. the space of nontrivial com-

plex homomorphisms of B.

A continuous point derivation of B at some element (f> e AB is a continuous

linear functional D on B such that

Dfg = 4>(f)Dg + <fi(g)Df

for all f ,g e B. The collection of all continuous point derivations of B at <f>

is a linear subspace 3(B ,4>) of B*.

For a compact subset X of C", P(X) will denote the uniform closure

in C(X) of the polynomials (considered as functions on X ) and H(X) will

be the closure in C(X) of the collection of functions holomorphic in some

neighborhood of X.

Using results and ideas of [BdP] we will prove a result which shows that a

continuous point derivation of H(X) is completely determined by its values

on the polynomials:

Theorem. Let X be a compact subset of C". Let D be a continuous point

derivation of H(X) such that D \ P(X) = 0. Then D = 0.
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2. Proof of the theorem

Let U be an open subset of C", containing X. Let E(U) be the envelope

of holomorphy of U (see [GR] for basic facts on the theory of several complex

variables). Every element / of the algebra cf(U) of holomorphic functions on

U can be extended in a unique way to an element / of cf(E(U)). Now let

<f> e AH(X). The map / -+ <f>(f\X) from cf(E(U)) onto C defines a con-
tinuous homomorphism of cf(E(U)) (endowed with the topology of uniform

convergence on compact subsets of E(U) ), and since these are the point eval-

uations at the points of E(U), [GR, Chapter I, §G], there is a point ae E(U)

such that

<f>(f\X) = f(a)
for all / G cf(E(U)). Now let D e 3(H(X), </>) with D \ P(X) = 0. Defining

d: cf(E(U)) -» C by df = D(f \ X) it follows that d is linear and satisfies

d(fg) = f(a)dg + g(a)df

for all f ,gecf(E(U)).

Moreover d(p) = 0 for any polynomial p on C" . We now argue as in [BdP,

Proof of Theorem 1]. By [H, Theorem 5.3.9, p. 128] there exist /,,... ,fm G

cf(E(U)) such that the map <D = (f,.zn,f{.fj: E(U) -» C"+m is

one-to-one and proper. Applying [GR, Theorem 15, Chapter VIII, §A, p. 224] to

the ideal sheaf of {a} , we find that for any / G cf(E(U)) there exist functions

hx.hn,gx.gmecf(E(U)) such that

i=i i=i

Applying d to (1), using dz¡ = 0, / = 1.n , we obtain

(1) / - f(a) = ¿(f, - *,(«))*; + ¿(/, - f(a))g,.

(2) df = J2gi(a)df
/=i

i.e. for any / g cf(E(U)) df is a linear combination of the numbers dfx , ... ,

dfm . Now let k e N, 77 g cf(Ck), b e Ck . Then there are functions 77,.

Hkecf(Ck) suchthat

(3) H(Q = H(b) + ^l-bl)Hi(Q,
/=i

again by the above cited theorem in [GR], or more simply in this case, using

power series.   Note:   H¡(b) = ^(b),   i = 1 , ... ,n.   Now in (3) we take

k = n + m, C = <P(z), b = <D(a) and 77 e cf(Cn+m), and apply d .

It follows that with standard coordinates (z, , ... , z  ,w,.w  ) eC x
v    1 n        1 m'

ç,m _ ç,n+m

m    r)H

(4) dH(zx.zn,fx.fj = £|_(<D(a)) df.
i= 1 '
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Applying Theorem A of Cartan [GR, Theorem 13, Chapter VIII, §A, p. 243]

to the sheaf of ideals of V = Q>(E(U)), it can be shown that given x e V

there are 77,.Hm e cf(C"+m) with 77,. vanishing on V   (i = I, ... ,m)

such that (ö(77,.Hm)/d(wx.wm))(x) ¿ 0. In particular for the point

aeE(U) we find Hx, ... ,Hme cf(Cn+m), vanishing on V such that

(5) ^;::::;^i))^^°-

By (4) ££igfW«»#, = <fc 7 = 1.m.
From (5) it now follows that df¡ = 0, i ~ 1 , ... , m , so by (2): df = 0 for

all fecf(E(U). So D\cf(U)\X = 0, so by continuity £> = 0.

Remark. For the special case that X is holomorphically convex, i.e. AH(X) =

X, we can give a short function algebraic proof of the theorem: First, we recall

a well-known fact: if B is a function algebra on X with P(X) c 73 c H(X)

and with AB = X, then B = H(X). Indeed: the functions zx , ... ,zn belong

to B and the joint spectrum oB(zx , ... ,zn) equals X since AB = X. So

if / G cf( U), U open in C" and containing X, by the functional calculus

[G2] f o(¿x , ... , zn) e B (here g denotes the Gelfand transform of g e B),

so f e B. Hence cf(U)|X C B, so B = H(X). Now assume AH(X) = X

and D is a continuous point derivation on H(X) with D\P(X) = 0. Let

B = KerZ) . The kernel of D is a function algebra on X containing P(X) and

AD = A/7(*), cf. [Gl]. By the above remark: KerZ) = 77(X), i.e. D = 0.

3. Examples

Since the theorem shows that any D e 3(H(X), <p) is completely deter-

mined by its values on P(X), it follows that D is completely determined by

D(zx), ... ,D(zn). This shows

Corollary. Let X be a compact subset of C" and <f> e AH(X). Then

àim3(H(X),(f>)<n.

We give some simple examples.

(i) If X is a compact subset of C" and a belongs to the interior of X,

then for any cx , ... ,cneC, X)"=1 c,7Jf-|a belongs to 3(H(X), a), i.e. for an

interior point a e X, dim3(H(X) ,a) = n .

(ii) Let X = {z e C: |z| < 1}, then P(X) = 77(A'). The continuous point

derivations D at points a with \a\ < 1 are by example (i) of the form Df =

cf'(a), c e C. Let a be a boundary point of X, say a = 1. Consider the

function / = v/î7r2 G H(X). If D e Der(H(X), 1), Dz = -0(1 - z) =

-Df2 = 2/(1)73/ = 0. Hence D = 0.
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(iii) In a similar way, it follows that for

jr = {(z,,z2)GC2:|z,|<l, |z,|<l},

dim^(Z7(X), (ax , a2)) = 2 if \ax \ < 1, |a2| < 1,

dxm3(H(X), (ax , a2)) = 1 if \ax \ = 1, |a2| < 1 or |a2| = 1, |a, | < 1,

dim3(H(X), (ax , a2)) = 0 if \ax \ = \a2\ = 1.

(iv) Let X = {(z, , z2) G C : z, = z2 , |z,| < 1} . Suppose D is a continuous

point derivation of P(X) = H(X) at (a, ,a2) e X. Since z, = z2 on X

we have 3a,Z)z, = 2a2Dz2 so if (a, ,a2) ¿ (0,0) ,Dz2 — (3ax/2a2)Dzx, so it

follows that

dim3(H(X), (a,,a2)) = 1        if (a{ ,a2) e X ,0 <\ax\ < I

and

dim3(H(X), (ax, a2)) = 0       if (a,, a2) e X, \ax \ = 1.

Finally, 3(H(X), (0,0)) has dimension 2: if / G Z7(*), g(z) = f(z2, z3),

|z| < 1, then Z),/ = g"(0),D2f = g'"(0) define two linearly independent

elements of ^(Z7(^r), (0,0)).
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