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DISTRIBUTIVE FACTOR LATTICES IN FREE RINGS

P. M. COHN

(Communicated by Donald S. Passman)

Abstract. For any field E with subfield k the free £-ring over A: on a

set X, R = Ek (X) isa fir. It is proved here that when E/k is purely

inseparable, then the submodule lattice R/cR is distributive, for any c =£ 0

( R has distributive factor lattice); by contrast this is false when E/k is a

nontrivial Galois extension and X ^ 0 .

1. Introduction

Let E be a skew field containing a subfield k in its centre. By the free E-

ring over k on a set X one understands the ring Ek (X) generated by E and

X with the defining relations

ax = xa     for all X G X , a G k .

In particular, when E = k, one also writes /c(^) and speaks of the free k-

algebra. Free £-rings form an example of firs [5], but the free /c-algebras also

have other properties not shared by all firs. In particular the author conjectured

in the early 1960s that k(X) has distributive factor lattice (see §2), and this

was proved by G. M. Bergman in his thesis [1]; (see also [5, p. 208]). Moreover,

in 1966 Bergman sent the author a 23 page manuscript which included a proof

that Ek (X) has distributive factor lattice whenever E/k is a purely inseparable

commutative field extension, and here the inseparability cannot be omitted.

This proof was never published. In 1981 the author, using results of Bergman

[2], found another shorter proof, and it is the object of this note to present this

proof.

In the proof it is convenient to use the notion of a conservative semifir (defined

in §2), in analogy with the conservative 2-fir introduced in the first edition of [5],

(the term has a similar connotation in field theory, cf. [7]). In the terminology

of [5], recalled below in §2, a conservative semifir is a persistent semifir R such

that R[t] is fully inert in R®k(t) (for a central indeterminate t).
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Now Dicks and Sontag have in [6] studied the class of rings satisfying

Sylvester's law of nullity, under the name 'Sylvester domains', and they have

shown in particular that for any free algebra R = k(X), the polynomial ring

R[t] is a Sylvester domain (cf. Theorem 5.5.12, p. 260 of [5]). Further, a con-

nexion between conservative semifirs and Sylvester domains was established in

[4], where the following result was proved.

Theorem 1.1. In any ring R, each of the following properties implies the next:

(a) R is a conservative semifir,

(b) R[t] is a Sylvester domain;

(c) R is a semifir with distributive factor lattice.

In particular, this shows again that every conservative semifir has distributive

factor lattice. Of course neither of the implications in the theorem can be

reversed, as examples (loc. cit.) show.

Any free algebra k (X) is easily seen to be a conservative semifir, so the above

theorem provides another proof that k(X) has distributive factor lattice.

After a preliminary section to explain the terminology we prove in §3 that for

any purely inseparable commutative field extension E/k the free ring Ek (X) is

a conservative semifir and so has distributive factor lattice. In §4 we give a rep-

resentation of the free ring associated with a Galois extension and use it to give

examples of free rings not possessing distributive factor lattice. I wish to thank

G. M. Bergman, W. Dicks and the referee for pointing out flaws in earlier ver-

sions and in some cases suggesting remedies.

2. Preliminaries

We begin by recalling notation, terminology and results needed in the sequel.

All our rings are associative, with a unit-element which is preserved by homo-

morphisms, inherited by subrings and which acts unitally on modules. A ring in

which the nonzero elements form a nonempty set closed under multiplication

is called an integral domain (not necessarily commutative). The group of units

in any ring R is denoted by U(R) .

If R is any ring, the set of all m x n matrices over R is denoted by mR"

and we write Rn for xRn and mR for mRx . The ring of all n x n matrices

over R is denoted by Rn or 9Jt (i?), and the group of all invertible n x n

matrices is written GLn(R). If A, B are any matrices over R , their diagonal

sum A © B is defined by

A@B =

A matrix C over a ring R is said to be full if it is square, say n x n , and it

cannot be written in the form C = AB, where A e nRr, B e rRn and r < n .

Let R be a ring and R' a subring. An element c of R' is said to be inert

in R if for every factorization c = ab , where a ,b e /?, we can find a unit u

in R such that au ,u~xb e R.'. If every nonzero element of R1 is inert in R

A    0

0    B
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we also say that R' is 1 -inert in R . If every full matrix over R' is inert in the

matrix ring over R we shall call R' fully inert in R .

We shall not repeat the definitions of fir and semifir (cf. [5]), but merely

recall that if a product of matrices over a semifir R is zero, AB — 0, then

this product can be trivialized in the sense that for some invertible matrix U,

the first r columns of AU and all but the first r rows of U~ B are zero; the

resulting relation AU • U~ B — 0 is said to be trivial.

A semifir R which is a k-algebra is said to be persistent over k if R®k(t)

is again a semifir, and a conservative semifir is a persistent semifir R such that

R[t] is fully inert in R <g> k(t).

In any semifir (or even 2-fir) R the principal right ideals containing any

fixed nonzero element form a modular lattice. If this lattice is actually dis-

tributive (for each nonzero element), R is said to have distributive factor lattice

(DFL). We remark that the lattice of principal right ideals containing c ^ 0

can be interpreted as the lattice of left factors of c , ordered by divisibility. By

the factorial duality valid in any integral domain (cf. 3.3, p. 166 of [5]), the

condition DFL is left-right symmetric.

Every semifir R has a universal field of fractions U ; this is a skew field with

R as subring and it is generated as a skew field by R . It is characterized up to

isomorphism by the fact that every full matrix over R becomes invertible over

U (clearly a nonfull square matrix can never be mapped to an invertible matrix

in any homomorphism to a field). We express this fact by saying that E has a

fully inverting homomorphism to U. More generally, Dicks and Sontag have in

[6] studied the precise class of rings which have a fully inverting homomorphism

to a skew field. Such rings are called Sylvester domains, because they can also

be characterized by a form of Sylvester's law of nullity, but we shall not need

the explicit form of this law and may take the above as a definition. Dicks

and Sontag also prove that for a commutative principal ideal domain P the

free P-algebra P(X) is a Sylvester domain (cf. Theorem 5.5.12, p. 260 of [5]).

This shows that for any free /c-algebra R = k(X) ( k a field), the polynomial

ring R[t] = k[t](X) is a Sylvester domain. This property will be generalized in

Theorem 3.3 below.

3. Inertia for free ¿s-rings

Our aim will be to show that for any purely inseparable field extension E/k

the free ring Ek(X) is a conservative semifir. We begin by describing the

structure of the tensor product by a purely inseparable extension. We shall

use the notation ¿s[X|<I>] for a commutative £-algebra with generators X and

defining relations O.

Lemma 3.1. Let E/k be a commutative field extension in finite characteristic p

and let F = k(a), where a has the minimal polynomial t" -a over k, q = pr.

If a, = as is the least power of a to lie in E and q = ss', then

(1) E®kF = E[x,y\x  =ax-y, / = 0].
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Proof. Regarded as ¿s-space, E® F has the basis 1,x,x2, ... ,x9~x, where

x = 1 ® a. The defining relation is x" = a ; writing y = a, ® 1 - 1 <8> ax , we

have x* = a, ® 1 - y , so the defining relation becomes

ii'        ,       „ , ,i' s' s' s'
a = x    = (a, ® 1 - j>)   =a,-y   =a-y   ,

i.e. y5 = 0, where we have used the fact that s' is a power of p . If we identify

c ® 1 with ce£,we thus obtain the presentation (1).

We next recall a result from [2]. In the form needed here it reads as follows,

using R*kS to denote the ring coproduct of R , S over k :

Let R be an integral domain which is a &-algebra, and for any integer q > 1,

write S = k[y\yq = 0]. Then if a , b e R *k S and ab = 0, we have

r — 1    s
a = axy u ,    b = u    y bx ,       r + s - q , ue \J(R *k S).

This follows from [2, Corollary 2.16], because R and 5 are both weakly

1-finite (i.e. fg — 1 implies gf = 1 ). Actually we shall need a slight variant

of this result, generalized to matrices as follows:

Proposition 3.2. Let R be a semifir which is a k-algebra, let S = E ®k F as

in Lemma 1, and put P = R *k S. Given A ,B G Pn, if AB — 0, then there

exists U e GLn(P) such that A = AXDXU, B = U~XD2BX, where Dx, D2 are

diagonal matrices over S such that DxD2 = 0.

Proof. We recall from [2, Corollary 2.15] that GLn(P) is generated by GLn(R),

GLn(S) and by transvections based in R, S or k. Now A defines a homo-

morphism a: nP —► "P , whose kernel contains the columns of B . By Corol-

lary 2.17 of [2] we can apply an isomorphism X to nP such that the kernel of

qA is in standard form, in terms of its restrictions to the components of nP.

Now over R any zero product of matrices can be trivialized (by the definition

of semifir), while over S we obtain the stated decomposition.

We now come to the main result of this section.

Theorem 3.3. Let E/k be a purely inseparable field extension. Then the free

ring R = Ek (X) is a conservative semifir.

Proof. We have E ®k k(t) = E(t) ; hence Ek(X) ® k(t) = E(t)k{t)(X) and this

shows Ek(X) to be a presistent semifir (clearly this argument applies for any

algebraic field extension E/k ). It remains to show that R[t] is fully inert in

R®k(t).
Let C be a full nxn matrix over R[t] which can be factorized over R®k(t);

on clearing fractions in t, we obtain a relation

(1) AB = fC,        A,B,C over R[t], f e k[t] .

If / has a separable zero a, let F/k be a Galois extension containing a.

Then D = E®kF is a field and so

RF = Ek(X)®kF = DF(X).



38 P. M. COHN

This is again a fir. The substitution t >->■ a defines a homomorphism X: R[t] —*

RF which we shall write as X: c >->■ c. Since / = 0, we obtain from (1),

AB = 0, as an equation over RF. Now RF is free, hence a semifir, and so

there is an invertible matrix U, which is a product of elementary matrices over

RF such that AU • U~ B = 0 is a trivial relation. Any elementary matrix

can be lifted to R[t] ; hence there is a matrix U0 over R[t], again product of

elementary matrices, such that U0 = U. It follows that for some r, the first r

columns of AU0 and the last n — r rows of t/"1 B are divisible by t — a. But

the entries of A , B , U0 are in R[t] and so are fixed under the action of the

group G = Gal(F/k). It follows that the first r columns of AU0 and the last

n - r rows of C/¿~ B are also divisible by t - a , for any conjugate a of a;

hence these columns and rows are divisible by the minimal polynomial g of a

over k . We replace A , B by AV , V~XB, where V = i70(/f © g/„_r). Then

^ F is divisible by g, and in this way we can reduce the degree of /. We may

thus assume that / has no separable zeros over k .

Secondly, consider the case where a zero a of / is purely inseparable over

k, of degree q say. Writing F = k(a), we have

Ek(X)®F = (E®kF)*FF(X),

and here E ® F  has the form described in Lemma 3.1.   If A is again the

substitution homomorphism / = a, we have AB - 0 ; hence by Proposition 3.2,

— —        -i

(2) A = AlDlU,        B=U    D2BX ,

where U is invertible and Dx ,D2 are matrices over E®F suchthat DxD2 = 0.

Let us write S = E®F , T = F(X), so that RF = S*F T . We know from [2,

Corollary 2.15] that GLn(RF) is generated by GLn(S), GLn(T) and transvec-

tions based in S, T or F. Since F and T are semifirs, their transvections

are just elementary matrices [2, p. 9; 5, p. 75]. It follows that U is a product of

elementary and diagonal matrices over S or T and transvections in S. Now

any transvection in S can be written as a product of elementary matrices and

diagonal transvections, because we have in S, as homomorphic image of the

principal ideal domain E[x], a diagonal reduction. In a diagonal transvection

the diagonal elements have the form l+ycay , where c + d > s' and a e RF .

Hence if P is any diagonal transvection, say P = diag(px , ... ,Pn), where

p¡■ = 1 + y^a^' and b e RF , then

P~X(I + beJP = / + (1 - yCl,auydu)b(l + /"a„/>m.

This shows that for any elementary matrix Q over RF there is another elemen-

tary matrix Q' such that QP = PQ' ; it follows that U = PU\ , where P is a

product of diagonal transvections and Ux is a product of elementary matrices

over RF . We replace U in (2) by PUX and obtain

A = AXDXPUX,        B = U~XP~XD2BX.
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We now lift (7, to a product U0 of elementary matrices over R[t] and replace

A , B by AU~X , U0B . Writing D} = DXP , £>4 = P~XD2 , we now have A~ =

AXD}, B = D4BX , where Z>3 ,D4 are products of diagonal transvections in S

and D3DA = 0. Hence over R[t] the product AB can be written

AB = A2B2(t - a)s' =fC,

Now we can cancel the factor (t - a)s   and so reduce the degree of /.

In the general case let F be a Galois extension of k over which all the zeros

of / are purely inseparable. Then D = E ®k F is a field and RF = DF (X).

Suppose first that / is irreducible over k and that its different (possible multi-

ple) zeros are a, , • • • ,av, say /' = gx- ■■ gv where gi = (t - a^ . By what has

been proved, there is a matrix U over R[t], product of elementary matrices,

such that the first r columns of AU and the last ft — r rows of U~ B are

divisible by gx . Now A ,B ,U are fixed under the action of the Galois group

Gal(F/k), while this group permutes the factors gx , ... , gv of / transitively.

Hence the first r columns of AU and the last n - r rows of U~ B are also

divisible by gx , ... , gv . Since the gt are pairwise coprime, these columns and

rows are divisible by gxg2... gv = /. Writing again V = U(Ir © fl„_r), we

find that AV = fAx , V~xB = Bx and Ax ,BX have entries in R[t]. Hence

we obtain fAxBx = fC and C — A{BX is the required factorization. If / is

reducible, the same argument applied to each factor leads to the desired con-

clusion.

Applying Theorem 1.1 we obtain

Corollary 3.4. If E/k is a purely inseparable field extension, then Ek (X) has

distributive factor lattice.

It would be interesting to know whether a generalization of Theorem 3.3

along the following lines holds (possibly under further hypotheses):

Let R be a /c-algebra which is a semifir and remains one under all separable

field extensions of k . Can one conclude that R[t] is fully inert in R <g> k(t) ?

We observe that this is true with 'separable' replaced by 'algebraic', by Propo-

sition 4.3.1, p. 205 and Example 4.3.4, p. 210 of [5].

4. The case of Galois extensions

Let us now consider the case of a Galois extension E/k . We shall then find

that Ek (X) is not conservative unless E = k or X = 0, but some remarks on

the structure of Ek(X) are necessary. We recall from [5, Theorem 2.2.4, p. 99]

that Ek(X) is a fir. Further, for a Galois extension E/k of degree n it is well

known (cf., e.g., [3, 6.10, Corollary 2, p. 246]), that

(1) E®kE = Ex®E2® •••©£„,

where the Ei are isomorphic copies of E. Explicitly, E{ is a free right E-

module on one generator w( such that aui = up"', where o{ ranges over

Gal(E/Jfc).
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Let M be an ¿s-bimodule in which the two actions of k agree; we shall write

Ek (M) for the tensor ring on M over E. The ambiguity arising from this

double use of notation, Ek (M) and Ek (X), can usually be resolved by using

different symbols for bimodules and free generating sets; thus M = E <8>k E

may be regarded as the free bimodule on one generator and we have

(2) Ek(M)=Ek{x),     where x = 1 ® 1 .

We also recall the well-known (and easily proved) formula

(3) Ek(M®N)^Ek(M)*EEk(N).

Let G = Gal(E/k) and for a e G define a skew polynomial ring Aa —

E[xa ; a] with commutation rule cxa — xaca (c e E). Then it is clear that for

the term E¡ in (1), Ek(Ej) = Aa . Hence, using (2) and (3), we obtain

Theorem 4.1. Let E/k be a Galois extension with group G = {ax , ... ,an}.

Then

W Ek(X) =\ *£■■■*£ Ao„-

To complete the argument we need a couple of lemmas.

Lemma 4.2. Let R be a 2-fir with DFL and S a subring of R. If S is a 2-fir
and U(5) = U(R)nS, then S again has DFL.

Proof. If S fails to have DFL, then by Lemma 4.2.1, p. 200 of [5], there is an

equation

(5) uav + waz = 1 ,

for some nonunit a of S. By hypothesis a is still a nonunit in R, so (5)

shows that R cannot have DFL.

We also need to know under what conditions a skew polynomial ring over

a field can have DFL. Let K be a skew field with an endomorphism a and

an a-derivation ô (i.e. ô is additive and (ab) = a ba + ab ). The skew

polynomial ring K[x;a,S] is defined as the ring of polynomials ^xlai with

the usual addition and commutation rule cx — xca + c    (c e K).

Lemma 4.3. Let R = K[x ; a, ô] be a skew polynomial ring over a skew field K.

Then R has DFL if and only if it is commutative, which is the case when K is

commutative, a = 1 and ô = 0.

Proof. It is clear that R is commutative precisely under the stated conditions,

and then it has DFL (cf. [5, p. 202]). Conversely, if R has DFL, then no

equation (5) with a nonunit a can hold, i.e. uav + waz cannot be a unit. Now

x is a nonunit and ax - xaa = a ; hence a = 0 for all a , so ô = 0. Similarly

x + 1 is a nonunit and a(x + 1 ) - (x + 1 )a" = a - aa , so aa = a for all a, i.e.

a = 1 . Finally, x + c is a nonunit for any c e K, and a(x + c) - (x + c)a =

ac - ca, so ac = ca, and K must be commutative.
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Corollary 4.4. If E/k is a nontrivial Galois extension and x is an indeterminate,

then Ek(x) does not have distributive factor lattice.

For by Theorem 4.1, Ek(x) has a subring Ag = E[xa ;a], a ^ 1, and no

nonunit of Ag becomes invertible in Ek(x). By Lemma 4.3, Ag does not

have DFL, and it is a principal ideal domain, hence a 2-fir. Therefore, by

Lemma 4.2, Ek(x) also fails to have DFL.

It seems likely that a corresponding result holds for any nontrivial extension

E/k that is not purely inseparable.
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