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COEFFICIENTS OF SYMMETRIC FUNCTIONS
OF BOUNDED BOUNDARY ROTATION

WOLFRAM KOEPF

(Communicated by Irwin Kra)

Abstract. The well-known inclusion relation between functions with bounded

boundary rotation and close-to-convex functions of some order is extended to

m-fold symmetric functions. This leads solving the corresponding result for

close-to-convex functions to the sharp coefficient bounds for m-fold symmetric

functions of bounded boundary rotation at most kn when k > 2m . Moreover

it shows that an m-fold symmetric function of bounded boundary rotation at

most (2m + 2)n is close-to-convex and thus univalent.

1. Introduction

We consider functions which are analytic in the unit disk D. By P we

denote the family of functions p which have the normalization

(1) p(z)= l + pxz + p2z2 + ---

and have positive real part; by P we denote the family of functions p which

are normalized by ( 1 ) and there exists a complex number a such that the rotated

function ap has positive real part.

We consider functions / which have the usual normalization

2 3
f(z) = z + a2z  + a3z  -l-.

A function is called m-fold symmetric if it has the special form (meN),

/i\ ri   \ m+1   . 2m+l
(2) f(z) = z + am+lz      +a2m+xz        +■■■.

By Km , Stm , Cm(ß) and Vm(k) respectively we denote the families of w-fold

symmetric convex, starlike, close-to-convex functions of order ß and functions

of bounded boundary rotation at most kn, respectively. A function is called

convex or starlike if it maps the unit disk univalently onto a convex or starlike

domain respectively.

A function / is called close-to-convex of order ß, ß > 0, if there is a

convex function <p such that f' /q>' - p for some function p eP . For ß < 1

it turns out that a function is close-to-convex or order ß , if and only if it maps

Received by the editors February 24. 1987 and, in revised form, March 2, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C45, 30C50.

©1989 American Mathematical Society

0002-9939/89 $1.00+ $.25 per page

324



COEFFICIENTS OF SYMMETRIC FUNCTIONS 325

D univalently onto a domain whose complement E is the union of rays, which

are pairwise disjoint up to their tips, such that every ray is the bisector of a

sector of angle (1 - ß)n which wholly lies in E (see e.g. [2], and [12, p. 176]).

By means of the introductory paper of Kaplan [7], it is easily verified that for

an m-fold symmetric function / the corresponding function <p can be chosen

also to be m-fold symmetric. This observation is due to Pommerenke [11], who

studied coefficient problems in Cm(ß). His asyptotic results give support to the

conjecture that if ß > 1 - 2/m , then the coefficients of a function / e Cm(ß)

given by (2) are dominated in modulus by the corresponding coefficients of the

function g given by

w g,(2) = (1_y/2/"'   ¿ko)=o.

Coefficient domination is denoted by / < g .

The above statement had been settled for m = 1 by Brannan, Clunie and

Kirwan [4] and the final step by Aharnov and Friedland [ 1 ] and independently

by Brannan [3], (see e.g. [14, Chapter 2]), and for ß = 1 by Pommerenke [11,

Theorem 3]. This latter statement includes the truth of the Littlewood-Paley

conjecture (see e.g. [6, §3.8]) for odd close-to-convex functions (of order one).

In §2 we give a proof of the above statement for ß > 1 - 1/m , whereas for

0 < ß < 1 - 1/m the statement is false as examples show, so that the number

1 - 1/m is sharp. However, for ß = 0, i.e. for convex functions, the statement

is again true, as was shown by Robertson [13, p. 380].

The boundary rotation of a function / is defined by

r2n

JO
sup

0<r< 1
Refl + ̂ W) de

Paatero [10] showed that / e Vx(k), if and only if

i     zf"     (k     l\ (k    ~l\1 + 7-=U + 2j^-U-2j^

for some px ,p2 e P.   An inspection of Paatero's proof shows that for an

m-fold symmetric function, px and p2 can be chosen to have the form

(4) px2(z) = l+cmz   +c2mz    +••• .

It is well known [4], (see e.g. [17, Theorem 2.26]) that functions of bounded

boundary rotation are close-to-convex of some order, namely

Vx(k)cCx(k/2-l).

In §3 we give an improvement of this result for m-fold symmetric functions:

Vm(k)cCm((k/2-l)/m),

which leads to the solution of the coefficient problem for m-fold symmetric

functions of bounded boundary rotation when k > 2m . This result includes the
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truth of the Littlewood-Paley conjecture for odd functions of bounded boundary

rotation 6n.

2. The coefficients of symmetric close-to-convex functions.

Here we shall prove

Theorem 1. Let m eN, ß > I - 1/m and f e Cm(ß). Then

(\ + zmyM    ,   ^m\ß

f« (1 - zm)ß+2lm '

Proof. Let / be an m-fold symmetric close-to-convex function of order ß.

Then there exist tp e Km and p e P such that

f'(z) = <p'(z).p\zm).

For each tp e Km there is a g e Stm such that g = ztp (see e.g. [14, The-

orem 2.4]), for which there is a representation of the form (see [5, Theorem

3])

g(z)= f       -Z     ,.    dfi,
J\X\ = l(\-XZm)2lm

where p is a Borel probability measure on the unit circle. Thus we have

f'<   \ Í dp. ß.   m.

f{Z) = L-l(l-xz^-p{Z)

f dp fl+xzm\"m      ß    m

-yw=i(i-x2z2mfm'\i-xzm) 'p [z ]-

For fixed x e <9D the function

( fl+XZ    \ ß.   m, \ .   m.
[{t#*)   ■p{z))        =:^(z)

is of the form (4) and lies in P. A well-known lemma [4, 3], (see e.g. [14,

Theorem 2.21]) implies that

/ , m s ß+\/m

qt+i/m(zm)<fl + Z

because ß + 1/m > 1. Thus we get

/'(*) = /-£=n7=-<r'""(0
dp ß+\/m,   m^

W=\(\-x2z2m)ylm'qx

j-l + \/m\    2mj \   f 2¡   ß+l/m,   m.= £ ( l/,"\zlmj    J       x2'q»;X,m(zm) dp

-■ft fi-rU\/m\.w.{.X+ ;m\0+l/m      (i + O'
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because p has total mass one and all numbers (>_1+1/m) are nonnegavite.     D

We remark that the result is sharp, because the function g defined by (3) is

in CJß) (see e.g. [11, p. 264]).

For 0 < ß < 1 - 2/m Pommerenke showed [11, Theorem 2], that an =

o(\/n) for a function / e Cm(ß), and that this cannot be improved [11,

p. 265]. But on the other hand, for ß > 1 - 2/m,

~,   ß-2+2/m,
% = 0(np ),

[11, Theorem 1].

Nevertheless, the statement of Theorem 1 is not true in the case 1 - 2/m <

ß < 1 - 1/m, not even for the third nonvanishing coefficient a2m+x , as the

following examples show. For 0 < t < 1 let

Then obviously f(z) = z + am+xzm+l + a2m+xz2m+l 4   •• € CJß). It follows

that

(\-zmY'm  v \!-z / V~z

Jm+\Z +a2m+l'

(2w + ;^+, = 2/9(1 + (ß - l)t2) + *£ + 1 (l + 1) =: F(t) .

The relation F'(t0) - 0 implies that

1

u     m(l - ß)

which lies between 0 and 1 if 0 < ß < 1 - 1/m, so that F has a local

maximum at t0, which is greater than the corresponding coefficient of g, as is

easily seen.

3. The coefficients of symmetric functions

of bounded boundary rotation.

It is well known that functions of bounded boundary rotation are close-to-

convex of some order,

(5) Vx(k)cCx(k/2-l).

We shall give now a generalized version of this statement for m-fold symmetric

functions. We need the following

") 1 v¥t -i- I "J m -i- 1

Lemma. Let f(z) = z+a2z +a3z H— and h(z) = z+bm+xz      +b2m+\z

-I-  have the property
h'(z) = (f'(zm))l,m .

Then

f e Vx(k) * h e VJk)

and

feCx(ß)*heCm(ß/m).
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Proof. Let f eVx (k). Then

,     z . f (z  )     ,     zh (z)
1 -I-—- = 1 4- -—-

f'(zm)        l+  h'(z)   •

so that h eVJk), and conversely.

If / € Cx(ß), then there are (p eKx and peP such that

f'(z) = <p'(z).pß(z).

Now
/'/   \       i r'<   mss\lm       ,   i,   m,,\lm       ß/m,   mN
h(z) = (f (z  ))      =(<p(z  ))'   -pPI   (z  )

i   ,        ß/m,   m,
= <px(z)-pPI   (Z   ) .

The function tpx  represents an m-fold symmetric convex function, because a

function is convex, if and only if 1 + zf"' /'/' e P (see e.g. [14, Theorem 2.4]),

and
„,„"/,. \ m    u,   m-.

l + z_rLW = l + z   <P(Z   )
(p\(z) <p'(zm)

So it follows that heCJß/m), and conversely,     a

We remark that the lemma can be used to show that Theorem 1 with ß —

1/2, m = 2 is somewhat stronger than the case ß = 1, m = 1. For example it

leads to the estimates | \a3\ — \a2\ \ < 1 and | |a4| - \a2\ \ < 2 for close-to-convex

functions [8, 9].

An application of the lemma, with the aid of (5), gives

Theorem 2. Let m e N, k>2. Then

VJk)cCJ(k/2-\)/m).

This leads to the following statements

Theorem 3. Let m e N, k >2m and f e V (k). Then

(1+zm)(fc/2-I)/m

(1 _z">\(k/2+l)/m

This follows with Theorem 1. Observe that the statement is sharp, because

the functions defined by (3) with ß = (k/2- l)/m are in VJk),

,     zg''    .      (k      \\    \ + zm     (k      1\    11 + Y"(Z)=U + 2J-T3^-(4-2J-ï
m— Z

+ zm

For m — 2, k = 6 we have the statement of the Littlewood-Paley conjecture.

Another example is m = 2, k = 4. Here one gets the sharp bounds for /,

normalized by (2),

l«2„+,l<<

1      //«/2+1/2N     (n/2-\/2\.
1 +     ' . if « is even,

2« 4- 1 VV     n/2     )     \ ri/2-l
2     (    n¡2

o—TT     i-,    i /i lf n is odd.
I 2n 4- 1 \n/2- 1/2
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It is an open question if the statement of Thoerem 3 remains true, when k <

2m. The close-to-convex counterexamples, given after Theorem 1, cannot be

used here.

Furthermore we have

Theorem 4. Let meN. Then VJ2m + 2) consists of close-to-convex and thus

univalent functions.
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