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ABSTRACT. We show that an isometric immersion of a connected Kaehler man-
ifold M?2" into the euclidean space with (real) codimension two is holomorphic
with respect to some complex structure of R2"+2 provided that the index of
nullity u of the curvature tensor satisfies 4 < 2n — 4 everywhere.

1. INTRODUCTION

In this article we consider the problem of whether a codimension two iso-
metric immersion f: M>" — R?"*? | of a Kaehler manifold of real dimension
2n into euclidean space is holomorphic, i.e., when f is congruent to a Kaehler
immersion of M in C"*' ~ R?"*?. We will prove

(1.1) Theorem. Let f: M>" — R*™*? bean isometric immersion of a connected
Kaehler manifold. Assume that the index of nullity u of the curvature tensor R
of M satisfies u < 2n — 4 everywhere. Then f is holomorphic.

In fact we will show that the theorem remains true under the weaker assump-
tion that the index of relative nullity v satisfies v < 2n — 4 everywhere. We
refer to [K-N] for basic facts and definitions.

The proof consists in a linear algebra argument which allows us to construct
pointwise an extension of the complex structure on each tangent space to M
to a complex structure in R*"*? 5o that the second fundamental form of f
is complex linear with respect to it. Then it is easy to see that this pointwise
constructed operator is parallel in the normal bundle and thus constant in R"*?
over M.

(1.2) Remark. The isometric product immersion f, x f,: M| x M} — R+

of two real Kaehler hypersurfaces f, M,." - R™! , provides examples, of any
dimensions, of isometric immersions with 4 = v = 2n — 4, which are not
holomorphic. See [D-G] for the classification of such submanifolds.
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2. THE MAIN LEMMA

Let V,W be finite dimensional real vector spaces. We say that a bilin-
ear form B:V x V — W is flat with respect to a nondegenerate real valued
symmetric bilinear form (inner product) {( , }: W x W — R iff

(B(x,y), B(w,2)) - (B(x.z2),B(w,y)) =0,

forall x,y,z,weV.

For x € V', we define the linear transformation B(x):V — W by B(x)(y) =
B(x,y). We say that x € V is a (left) regular element if dim B(x)(V) =
max, ., dim B(z)(V'). It is easily checked that the subset of regular elements of
B in V is open and dense. The following result follows from equation (8) and
(9) of [M, p. 462].

(2.1) Lemma. Suppose that x € V is a regular element. Then for n €
ker B(x), we have

BV .m) C Bx)(V) N (BGx)(V))™.

We say that the symmetric bilinear form ( , ): W x W — R has signature
(p.q) if dim W = p+q, and there exists abasis {, , ... ,{, suchthat (C,.,CJ.) =
edij,with e=1for 1<j<p, e=-1for p+1<j<p+gq. We define the
nullity of g by N(B)={me V:B(z,m) =0, forall z€ V}. We now state
and prove our main lemma.

(2.2) Lemma. Suppose that the bilinear form B:V xV — W, B # 0, is
Sflat with respect to an inner-product { , ) of signature (p,p), 1 < p < 2.
Assume dimV > dim W and dimN(B) < dimV —dim W . Then W admits
an orthogonal direct sum decomposition W = W, @ W, such that the restriction
of (, ) to W, is nondegenerate of signature (q,q), 1 <q<2,andif B, and
B, are the W, and W, components of B respectively, then

(i) B,#0 and (B,(x,y),B(w,2))=0 forall x,y,w,zeV.
(ii) B, isflat and dim N(B,) > dimV - 2.

Proof. First we claim that if x € V' is a regular element, then the restriction

of () to B(x)(V) is degenerate. Otherwise ﬂ(x)(V)n(ﬂ(x)(V))J‘ = {0} and

it follows from (2.1) that ker #(x) C N(B). Since, by definition, N(B) C

ker f(x), we conclude dim N(f) = dimker #(x) > dim V' —dim W, which is a
contradiction.

Now assume that for all regular elements x € V', B(x)(V) is a null subspace
of W ie., (,)=0 restrictedto S(x)(V)xB(x)(V). Thus (B(x, z), B(x,w))
=0, for all z,w € V. Since the set of regular elements is dense, we have by
continuity that (f(x,z), f(x,w)) =0 forall x,z,w € V. By flatness

0=(B(x+y.2),B(x+y. w)=2(B(x w),B(y,2),

forall x,y,z,weV. Setting W, = W, W, =0, we obtain the conclusions
of the lemma in this case.
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Notice that if p = 1, the only degenerate subspaces of W are null subspaces.
Thus, the case p =1 is proved by the above argument.

It remains to consider the case when p = 2 and there exists a regular
element x € V such that B(x)(V) is not a null subspace. In this situa-
tion the null subspace U(x) = B(x)(V) N (B(x)(V))l satisfies dim U(x) =
1. To see this, observe that if dimU(x) = 2, we would conclude from
4 = dim W = dim B(x)(V) + dim(B(x)(V))", that B(x)(V) = (B(x)(V))" =
U(x), and this is a contradiction. It follows that 2 < dim g(x)(V) < 3,
and hence dimker f(x) > dim ¥V — 3. We claim that the subspace S(8) =
span{f(y,z):y,z € V} is orthogonal to U(x). Otherwise, there exists u,v €
V' such that (B(u,v),&,) # 0, where £, € W is a null vector spanning U(x).
For n € ker f(x), we have from 2.1 and flatness that

B(y.n)=0 iff (B(y.,n),B(u,v))=(B(u,n),B(y.v))=0.
Consider the linear map B:ker 8(x) — U(x), given by B(n) = f(u,n). By the
above ker B C N(B), and therefore dim N(8) > dimker B > dimker 8(x) —
dim U(x) > dim ¥V — 4, which is a contradiction and proves the claim.

We complete ¢, , to a pseudo-orthonormal basis &, ,¢,,&,,¢, of W such
that (£,.&) =1, (§,,¢,) =0,and (§,{)=0for 1<i<2,3<j<4or
i =3, j=4. The existence of such basis follows from [A, Theorem 3.8, p. 120].
We write f = Z;=| Pé B where each ¢’ is an ordinary real-valued bilinear
form. From ¢, € S(f) we get ¢' # 0, and from the fact that £, is orthogonal
to S(B), we conclude ¢2 = 0. Set W, = span{¢, ,¢,}, W, = span{¢;.¢,},
B, = ¢'¢, and B, = $°¢, + ¢*¢,. Then B, verifies (i) of (2.2), and thus
B, = B — B, if flat. It remains to show that S(B,) is nondegenerate and the
second part of (ii) in (2.2) will follow from B, = 0 or the fact that W, has
signature (1,1). To see this, observe that if (Z;=l Bz(xj 2 Yi) B,(w, z)) =0 for
all w,z eV, then (E;=1 ,B(xj,yj),ﬂ(w,z)) = 0, and thus E,- B(x;.y,) €
W, . This implies Zj.:l By(x;.,y;) = 0. This concludes the proof of the lemma.

3. PROOF OF THE THEOREM

Let a: TpM x T pM - N pM be the vector valued second fundamental form
of the immersion f at p € M, where NpM is the orthogonal complement of

the tangent space TpM in R**2 . Set W = NpM &N pM , and define an inner-
product {( , )) of signature (2,2) in W by requiring that (@ 7,y ®J)) =
(éz, y% —(n,d), where ( , ) denotes both the riemannian metrics on M and
R,

Consider the bilinear form g: TMxT,M - W defined by B(x,y) =
a(x,y)®a(x,Jy), where J is the complex structure in TM . It follows easily
from the Gauss equations and the relation (R(u,v)Jw,Jz) = (R(u,v)w, z),
that B is flat. Clearly, dim(N(f) < 2n — 4, and thus f = B, @ B, as in
(2.2). We claim that g, = 0. Assume otherwise. We choose orthonormal bases
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(.0}, {&€.7} of N,M , such that S(B) = span{¢ ® &} . Thus,
(3.1) (a(x,y).&) =(a(x,Jy),& forall xT,M,yeV,

where V = ker(B,) C T,M . Then dimV =2n-2,and B(x,v) = p,(x,v) for
alxeT,M,veV.In particular (B(x,v),n®{0}) = (B(x,v),{0}®#) =0,
since (@&, na{0}) = (¢ aé,{0}®7)=0. We obtain

(3.2) (a(x,v),n)=0=(a(x,Jv). /) foralxeT M, veV.

We conclude from (3.2) that either / = 97 or JV NV C N(a), where the
second possibility is in contradiction with the assumption of the theorem, since
dimJV NV > 2n — 4. In particular, it follows that & = +¢, and from (3.1)
we have (a(x,y),&) = +(a(x,Jy),&) = (a(x,J7),& = —(a(x,y) &) = 0.
Thus V C N(a) which is not possible. This proves our claim.

We have from g = g, that

(a(x,y),a(w,2)) = {a(x,Jy),a(w,Jz)), forallx,y w,zeT,M.

In particular, ||a(x,y)|| = |la(x,Jy)|| and (a(x,y),a(x,Jy)) = 0. This
means that the complex structure J of TM extends to an almost complex
structure J on the tangent bundle of R restricted to f, such that the
second fundamental form a is complex linear, i.e.,

(3.3) alx,Jy)=Ja(x,y)=a(lJx,y).

For dimension reasons, the orthogonal transformation J restricted to the nor-
mal bundle NM is parallel in the normal connection. Now, it follows easily
using (3.3) that J is constant in R"+2 along M . This completes the proof of
the theorem.
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