A CHARACTERIZATION OF COMPLEX HYPERSURFACES IN \mathbf{C}^{m}

MARCOS DAJCZER
(Communicated by David G. Ebin)

Abstract

We show that an isometric immersion of a connected Kaehler manifold $M^{2 n}$ into the euclidean space with (real) codimension two is holomorphic with respect to some complex structure of $\mathbf{R}^{2 n+2}$ provided that the index of nullity μ of the curvature tensor satisfies $\mu<2 n-4$ everywhere.

1. Introduction

In this article we consider the problem of whether a codimension two isometric immersion $f: M^{2 n} \rightarrow \mathbf{R}^{2 n+2}$, of a Kaehler manifold of real dimension $2 n$ into euclidean space is holomorphic, i.e., when f is congruent to a Kaehler immersion of M in $\mathbf{C}^{n+1} \simeq \mathbf{R}^{2 n+2}$. We will prove
(1.1) Theorem. Let $f: M^{2 n} \rightarrow \mathbf{R}^{2 n+2}$ be an isometric immersion of a connected Kaehler manifold. Assume that the index of nullity μ of the curvature tensor R of M satisfies $\mu<2 n-4$ everywhere. Then f is holomorphic.

In fact we will show that the theorem remains true under the weaker assumption that the index of relative nullity ν satisfies $\nu<2 n-4$ everywhere. We refer to $[\mathrm{K}-\mathrm{N}]$ for basic facts and definitions.

The proof consists in a linear algebra argument which allows us to construct pointwise an extension of the complex structure on each tangent space to M to a complex structure in $\mathbf{R}^{2 n+2}$ so that the second fundamental form of f is complex linear with respect to it. Then it is easy to see that this pointwise constructed operator is parallel in the normal bundle and thus constant in $\mathbf{R}^{2 n+2}$ over M.
(1.2) Remark. The isometric product immersion $f_{1} \times f_{2}: M_{1}^{n} \times M_{2}^{n} \rightarrow \mathbf{R}^{2 n+2}$, of two real Kaehler hypersurfaces $f_{i}: M_{i}^{n} \rightarrow \mathbf{R}^{n+1}$, provides examples, of any dimensions, of isometric immersions with $\mu=\nu=2 n-4$, which are not holomorphic. See [D-G] for the classification of such submanifolds.

2. The main lemma

Let V, W be finite dimensional real vector spaces. We say that a bilinear form $\beta: V \times V \rightarrow W$ is flat with respect to a nondegenerate real valued symmetric bilinear form (inner product) $\langle\rangle:, W \times W \rightarrow \mathbf{R}$ iff

$$
\langle\beta(x, y), \beta(w, z)\rangle-\langle\beta(x, z), \beta(w, y)\rangle=0
$$

for all $x, y, z, w \in V$.
For $x \in V$, we define the linear transformation $\beta(x): V \rightarrow W$ by $\beta(x)(y)=$ $\beta(x, y)$. We say that $x \in V$ is a (left) regular element if $\operatorname{dim} \beta(x)(V)=$ $\max _{z \in V} \operatorname{dim} \beta(z)(V)$. It is easily checked that the subset of regular elements of β in V is open and dense. The following result follows from equation (8) and (9) of [M, p. 462].
(2.1) Lemma. Suppose that $x \in V$ is a regular element. Then for $n \in$ $\operatorname{ker} \beta(x)$, we have

$$
\beta(V, n) \subset \beta(x)(V) \cap(\beta(x)(V))^{\perp}
$$

We say that the symmetric bilinear form $\langle\rangle:, W \times W \rightarrow \mathbf{R}$ has signature (p, q) if $\operatorname{dim} W=p+q$, and there exists a basis $\zeta_{1}, \ldots, \zeta_{n}$ such that $\left\langle\zeta_{i}, \zeta_{j}\right\rangle=$ $\varepsilon \delta i j$, with $\varepsilon=1$ for $1 \leq j \leq p, \varepsilon=-1$ for $p+1 \leq j \leq p+q$. We define the nullity of β by $N(\beta)=\{m \in V: \beta(z, m)=0$, for all $z \in V\}$. We now state and prove our main lemma.
(2.2) Lemma. Suppose that the bilinear form $\beta: V \times V \rightarrow W, \beta \neq 0$, is flat with respect to an inner-product \langle,$\rangle of signature (p, p), 1 \leq p \leq 2$. Assume $\operatorname{dim} V>\operatorname{dim} W$ and $\operatorname{dim} N(\beta)<\operatorname{dim} V-\operatorname{dim} W$. Then W admits an orthogonal direct sum decomposition $W=W_{1} \oplus W_{2}$ such that the restriction of \langle,$\rangle to W_{1}$ is nondegenerate of signature $(q, q), 1 \leq q \leq 2$, and if β_{1} and β_{2} are the W_{1} and W_{2} components of β respectively, then
(i) $\beta_{1} \neq 0$ and $\left\langle\beta_{1}(x, y), \beta_{1}(w, z)\right\rangle=0$ for all $x, y, w, z \in V$.
(ii) β_{2} is flat and $\operatorname{dim} N\left(\beta_{2}\right) \geq \operatorname{dim} V-2$.

Proof. First we claim that if $x \in V$ is a regular element, then the restriction of $\left\rangle\right.$ to $\beta(x)(V)$ is degenerate. Otherwise $\beta(x)(V) \cap(\beta(x)(V))^{\perp}=\{0\}$ and it follows from (2.1) that $\operatorname{ker} \beta(x) \subset N(\beta)$. Since, by definition, $N(\beta) \subset$ ker $\beta(x)$, we conclude $\operatorname{dim} N(\beta)=\operatorname{dim} \operatorname{ker} \beta(x) \geq \operatorname{dim} V-\operatorname{dim} W$, which is a contradiction.

Now assume that for all regular elements $x \in V, \beta(x)(V)$ is a null subspace of W, i.e., $\langle,\rangle \equiv 0$ restricted to $\beta(x)(V) \times \beta(x)(V)$. Thus $\langle\beta(x, z), \beta(x, w)\rangle$ $=0$, for all $z, w \in V$. Since the set of regular elements is dense, we have by continuity that $\langle\beta(x, z), \beta(x, w)\rangle=0$ for all $x, z, w \in V$. By flatness

$$
0=\langle\beta(x+y, z), \beta(x+y, w)\rangle=2\langle\beta(x, w), \beta(y, z)\rangle,
$$

for all $x, y, z, w \in V$. Setting $W_{1}=W, W_{2}=0$, we obtain the conclusions of the lemma in this case.

Notice that if $p=1$, the only degenerate subspaces of W are null subspaces. Thus, the case $p=1$ is proved by the above argument.

It remains to consider the case when $p=2$ and there exists a regular element $x \in V$ such that $\beta(x)(V)$ is not a null subspace. In this situation the null subspace $U(x)=\beta(x)(V) \cap(\beta(x)(V))^{\perp}$ satisfies $\operatorname{dim} U(x)=$ 1. To see this, observe that if $\operatorname{dim} U(x)=2$, we would conclude from $4=\operatorname{dim} W=\operatorname{dim} \beta(x)(V)+\operatorname{dim}(\beta(x)(V))^{\perp}$, that $\beta(x)(V)=(\beta(x)(V))^{\perp}=$ $U(x)$, and this is a contradiction. It follows that $2 \leq \operatorname{dim} \beta(x)(V) \leq 3$, and hence $\operatorname{dim} \operatorname{ker} \beta(x) \geq \operatorname{dim} V-3$. We claim that the subspace $S(\beta)=$ $\operatorname{span}\{\beta(y, z): y, z \in V\}$ is orthogonal to $U(x)$. Otherwise, there exists $u, v \in$ V such that $\left\langle\beta(u, v), \xi_{1}\right\rangle \neq 0$, where $\xi_{1} \in W$ is a null vector spanning $U(x)$. For $n \in \operatorname{ker} \beta(x)$, we have from 2.1 and flatness that

$$
\beta(y, n)=0 \quad \text { iff }\langle\beta(y, n), \beta(u, v)\rangle=\langle\beta(u, n), \beta(y, v)\rangle=0 .
$$

Consider the linear map $B: \operatorname{ker} \beta(x) \rightarrow U(x)$, given by $B(n)=\beta(u, n)$. By the above $\operatorname{ker} B \subset N(\beta)$, and therefore $\operatorname{dim} N(\beta) \geq \operatorname{dim} \operatorname{ker} B \geq \operatorname{dim} \operatorname{ker} \beta(x)-$ $\operatorname{dim} U(x) \geq \operatorname{dim} V-4$, which is a contradiction and proves the claim.

We complete ξ_{1}, to a pseudo-orthonormal basis $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ of W such that $\left\langle\xi_{1}, \xi_{2}\right\rangle=1,\left\langle\xi_{2}, \xi_{2}\right\rangle=0$, and $\left\langle\xi_{i}, \xi_{j}\right\rangle=0$ for $1 \leq i \leq 2,3 \leq j \leq 4$ or $i=3, j=4$. The existence of such basis follows from [A, Theorem 3.8, p. 120]. We write $\beta=\sum_{j=1}^{4} \phi^{j} \xi_{j}$, where each ϕ^{j} is an ordinary real-valued bilinear form. From $\xi_{1} \in S(\beta)$ we get $\phi^{1} \neq 0$, and from the fact that ξ_{1} is orthogonal to $S(\beta)$, we conclude $\phi^{2}=0$. Set $W_{1}=\operatorname{span}\left\{\xi_{1}, \xi_{2}\right\}, W_{2}=\operatorname{span}\left\{\xi_{3}, \xi_{4}\right\}$, $\beta_{1}=\phi^{1} \xi_{1}$ and $\beta_{2}=\phi^{3} \xi_{3}+\phi^{4} \xi_{4}$. Then β_{1} verifies (i) of (2.2), and thus $\beta_{2}=\beta-\beta_{1}$ if flat. It remains to show that $S\left(\beta_{2}\right)$ is nondegenerate and the second part of (ii) in (2.2) will follow from $\beta_{2}=0$ or the fact that W_{2} has signature (1,1). To see this, observe that if $\left\langle\sum_{j=1}^{4} \beta_{2}\left(x_{j}, y_{j}\right), \beta_{2}(w, z)\right\rangle=0$ for all $w, z \in V$, then $\left\langle\sum_{j=1}^{4} \beta\left(x_{j}, y_{j}\right), \beta(w, z)\right\rangle=0$, and thus $\sum_{j} \beta\left(x_{j}, y_{j}\right) \in$ W_{1}. This implies $\sum_{j=1}^{4} \beta_{2}\left(x_{j}, y_{j}\right)=0$. This concludes the proof of the lemma.

3. Proof of the theorem

Let $\alpha: T_{p} M \times T_{p} M \rightarrow N_{p} M$ be the vector valued second fundamental form of the immersion f at $p \in M$, where $N_{p} M$ is the orthogonal complement of the tangent space $T_{p} M$ in $\mathbf{R}^{2 n+2}$. Set $W=N_{p} M \oplus N_{p} M$, and define an innerproduct $\langle\langle\rangle$,$\rangle of signature (2,2)$ in W by requiring that $\langle\langle\xi \oplus \eta, \gamma \oplus \delta\rangle\rangle=$ $\langle\xi, \gamma\rangle-\langle\eta, \delta\rangle$, where \langle,$\rangle denotes both the riemannian metrics on M$ and $\mathbf{R}^{2 n+2}$.

Consider the bilinear form $\beta: T_{p} M \times T_{p} M \rightarrow W$ defined by $\beta(x, y)=$ $\alpha(x, y) \oplus \alpha(x, J y)$, where J is the complex structure in $T M$. It follows easily from the Gauss equations and the relation $\langle R(u, v) J w, J z\rangle=\langle R(u, v) w, z\rangle$, that β is flat. Clearly, $\operatorname{dim}\left(N(\beta)<2 n-4\right.$, and thus $\beta=\beta_{1} \oplus \beta_{2}$ as in (2.2). We claim that $\beta_{2}=0$. Assume otherwise. We choose orthonormal bases
$\{\xi, \eta\},\{\tilde{\xi}, \tilde{\eta}\}$ of $N_{p} M$, such that $S\left(\beta_{1}\right)=\operatorname{span}\{\xi \oplus \tilde{\xi}\}$. Thus,

$$
\begin{equation*}
\langle\alpha(x, y), \xi\rangle=\langle\alpha(x, J y), \tilde{\xi}\rangle \quad \text { for all } x T_{p} M, y \in V \tag{3.1}
\end{equation*}
$$

where $V=\operatorname{ker}\left(\beta_{2}\right) \subset T_{p} M$. Then $\operatorname{dim} V=2 n-2$, and $\beta(x, v)=\beta_{1}(x, v)$ for all $x \in T_{p} M, v \in V$. In particular $\langle\beta(x, v), \eta \oplus\{0\}\rangle=\langle\beta(x, v),\{0\} \oplus \tilde{\eta}\rangle=0$, since $\langle\xi \oplus \tilde{\xi}, \eta \oplus\{0\}\rangle=\langle\xi \oplus \tilde{\xi},\{0\} \oplus \tilde{\eta}\rangle=0$. We obtain

$$
\begin{equation*}
\langle\alpha(x, v), \eta\rangle=0=\langle\alpha(x, J v), \tilde{\eta}\rangle \quad \text { for all } x \in T_{p} M, v \in V . \tag{3.2}
\end{equation*}
$$

We conclude from (3.2) that either $\tilde{\eta}= \pm \eta$ or $J V \cap V \subset N(\alpha)$, where the second possibility is in contradiction with the assumption of the theorem, since $\operatorname{dim} J V \cap V \geq 2 n-4$. In particular, it follows that $\tilde{\xi}= \pm \xi$, and from (3.1) we have $\langle\alpha(x, y), \xi\rangle= \pm\langle\alpha(x, J y), \xi\rangle=\left\langle\alpha\left(x, J^{2} y\right), \xi\right\rangle=-\langle\alpha(x, y), \xi\rangle=0$. Thus $V \subset N(\alpha)$ which is not possible. This proves our claim.

We have from $\beta=\beta_{1}$ that

$$
\langle\alpha(x, y), \alpha(w, z)\rangle=\langle\alpha(x, J y), \alpha(w, J z)\rangle, \quad \text { for all } x, y, w, z \in T_{p} M
$$

In particular, $\|\alpha(x, y)\|=\|\alpha(x, J y)\|$ and $\langle\alpha(x, y), \alpha(x, J y)\rangle=0$. This means that the complex structure J of $T M$ extends to an almost complex structure J on the tangent bundle of $\mathbf{R}^{2 n+2}$ restricted to f, such that the second fundamental form α is complex linear, i.e.,

$$
\begin{equation*}
\alpha(x, J y)=J \alpha(x, y)=\alpha(J x, y) \tag{3.3}
\end{equation*}
$$

For dimension reasons, the orthogonal transformation J restricted to the normal bundle $N M$ is parallel in the normal connection. Now, it follows easily using (3.3) that J is constant in $\mathbf{R}^{2 n+2}$ along M. This completes the proof of the theorem.

References

[A] M. Artin, Geometric algebra, Interscience, New York, 1957.
[D-G] M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Differential Geom. 22 (1985), 13-28.
[K-N] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1969.
[M] J. D. Moore, Submanifolds of constant positive curvature. I, Duke Math. J. 44 (1977), 449-484.
Instituto de Matematica Pure e Aplicada, IMPA, Est. Dona Castorina 110, CEP 22460, Rio de Janeiro, Brazil

