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(Communicated by David G. Ebin)

Abstract. We show that an isometric immersion of a connected Kaehler man-

ifold M2n into the euclidean space with (real) codimension two is holomorphic

with respect to some complex structure of R2"+2 provided that the index of

nullity ß of the curvature tensor satisfies ß < 2n — 4 everywhere.

1. Introduction

In this article we consider the problem of whether a codimension two iso-
2n 2w4-2

metric immersion f:M -»R , of a Kaehler manifold of real dimension

2« into euclidean space is holomorphic, i.e., when / is congruent to a Kaehler

immersion of M in C"+  ~ R "+ . We will prove

(1.1) Theorem. Let f:M"—*Rn+ bean isometric immersion of a connected

Kaehler manifold. Assume that the index of nullity p. of the curvature tensor R

of M satisfies p <2n - 4 everywhere. Then f is holomorphic.

In fact we will show that the theorem remains true under the weaker assump-

tion that the index of relative nullity v satisfies v < 2« - 4 everywhere. We

refer to [K-N] for basic facts and definitions.

The proof consists in a linear algebra argument which allows us to construct

pointwise an extension of the complex structure on each tangent space to M

to a complex structure in R "+ so that the second fundamental form of /

is complex linear with respect to it. Then it is easy to see that this pointwise

construd

over M

constructed operator is parallel in the normal bundle and thus constant in R "+

(1.2) Remark. The isometric product immersion /. x f2:M" x M" —► R "+ ,

of two real Kaehler hypersurfaces f¡: M" —► Rn+ , provides examples, of any

dimensions, of isometric immersions with p = v = 2« - 4, which are not

holomorphic. See [D-G] for the classification of such submanifolds.
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2. The main lemma

Let V, W be finite dimensional real vector spaces. We say that a bilin-

ear form ß: V x V —► W is flat with respect to a nondegenerate real valued

symmetric bilinear form (inner product) ( , ): W x W —> R iff

(ß(x,y),ß(w,z))-(ß(x,z),ß(w,y)) = 0,

for all x , y , z , w e V.

For x e V, we define the linear transformation ß(x): V —► W by ß(x)(y) =

ß(x,y). We say that x e V is a (left) regular element if dim/?(.*)( F) =

maxz€F dimß(z)iV). It is easily checked that the subset of regular elements of

ß in V is open and dense. The following result follows from equation (8) and

(9) of [M, p. 462].

(2.1) Lemma. Suppose that x € V is a regular element. Then for n e

ker/?(x), we have

ß(V,n)cß(x)(V)n(ß(x)(V))±.

We say that the symmetric bilinear form ( , ): W x W —> R has signature

(p, q) if dim W = p+q, and there exists a basis Ç{ , ... , £„ such that (£(, £ ) =

eôij, with e = 1 for \ < j < p , e = -1 for p + 1 < / < p + q . We define the

nullity of ß by N(ß) = {m e V: ß(2, m) = 0, for all z eV) . We now state

and prove our main lemma.

(2.2) Lemma. Suppose that the bilinear form ß: V x V —> W, ß ^ 0, is

flat with respect to an inner-product ( , ) of signature (p, p), 1 < p < 2.

Assume dim V > dim W and dimN(ß) < dim V - dim W. Then W admits

an orthogonal direct sum decomposition W = WX®W2 such that the restriction

of ( , ) to Wl is nondegenerate of signature iq ,q), I < Q < 2, and if ßx and

ß2 are the Wx and W2 components of ß respectively, then

(i)   /?, ¿0 and (ß^x , y), ß^w , z)) = 0 for all x,y,w,zeV.
(ii)   ß2 is flat and dim Niß2) > dim V - 2.

Proof. First we claim that if x e V is a regular element, then the restriction

of () to ß(x)(V) is degenerate. Otherwise ß(x)(V) n (ß(x)(V))-L = {0} and

it follows from (2.1) that ker)?(x) c N(ß). Since, by definition, N(ß) c

ker^(x), we conclude dim N(ß) = dimkery?(x) > dim V - dim W, which is a

contradiction.

Now assume that for all regular elements x e V , ß(x)(V) is a null subspace

of W, i.e., ( , ) = 0 restricted to ß(x)(V)xß(x)(V). Thus (ß(x ,z) ,ß(x ,w))

= 0, for all z ,w e V . Since the set of regular elements is dense, we have by

continuity that (ß(x , z), ß(x , w)) = 0 for all x , z , w e V . By flatness

0 = (ß(x + y,z),ß(x + y,w)) = 2(ß(x , w), ß(y , z)),

for all x ,y , z ,w e V . Setting Wx - W, W2 = 0, we obtain the conclusions

of the lemma in this case.
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Notice that if p = 1, the only degenerate subspaces of W are null subspaces.

Thus, the case p — 1 is proved by the above argument.

It remains to consider the case when p = 2 and there exists a regular

element x e V such that ß(x)iV) is not a null subspace. In this situa-

tion the null subspace U(x) = ß(x)(V) n (ß(x)(V))± satisfies dimU(x) =

1 . To see this, observe that if dim U(x) = 2, we would conclude from

4 = dim W = dimßix)iV) + dim(ß(x)(V))± , that ß(x)(V) = (ß(x)(V))x =

U(x), and this is a contradiction. It follows that 2 < dim/?(.*)( K) < 3,

and hence dim ker/?(.*) > dim F - 3. We claim that the subspace S(ß) -

span{/?(y , z): y , z e V} is orthogonal to U(x). Otherwise, there exists u , v e

V such that (ß(u, v), <!;,) ̂ 0, where £, € W is a null vector spanning i/(x).

For n e ker ß(x), we have from 2.1 and flatness that

ß(y,n) = 0   iff (ß(y ,n), ß(u ,v)) = (ß(u ,n), ß(y ,v)) = 0.

Consider the linear map B: ker ß(x) -* U(x), given by B(n) — ßiu, n). By the

above ker 5 c Niß), and therefore dimN(ß) > dimker5 > dimker/?(x) -

dim U(x) > dim V - 4, which is a contradiction and proves the claim.

We complete £,, to a pseudo-orthonormal basis £, , ¿¡2, <^3, ̂4 of W such

that (f, ,Q = 1, (f?-.<y = 0, and (£..<*,) = 0 for 1 < i < 2, 3 < j < 4 or
i = 3 , j — 4. The existence of such basis follows from [A, Theorem 3.8, p. 120].

We write ß = X^,=i 0;í, > where each <£7 is an ordinary real-valued bilinear

form. From ¿^ e S(ß) we get 01 / 0, and from the fact that £, is orthogonal

to S(/?), we conclude </>2 = 0. Set Wl = span{<^, ,Ç2}, W2 = span{^3,^4},

ßx — <j)l¿;l and ß2 = <j> ̂3 + <p4Ç4. Then ^t verifies (i) of (2.2), and thus

ß2 — ß - ßx if flat. It remains to show that S(ß2) is nondegenerate and the

second part of (ii) in (2.2) will follow from ß2 = 0 or the fact that W2 has

signature (1,1). To see this, observe that if (X^=i ß%ixj > y¡) • ßi(w - z)) = 0 f°r

all w , z e V, then (£,4=1 ß(Xj, y), ß(w , z)) = 0, and thus £;. ß(Xj, y¡) e

Wx. This implies J2¡=] ß2(X:, y ) = 0. This concludes the proof of the lemma.

3. Proof of the theorem

Let q: TM xT M —» N M be the vector valued second fundamental formp p p
of the immersion / at p e M, where N M is the orthogonal complement of

the tangent space T M in R . Set W - N M@N M, and define an inner-

product (( , )) of signature (2,2) in W by requiring that ((£ © n ,y ©<$)) =

{£, y) — (r¡, 8), where ( , ) denotes both thé riemannian metrics on M and

R2„+2_

Consider the bilinear form ß:TM x TM —► W defined by ß(x ,y) =

a(x , y)@aix, Jy), where J is the complex structure in TM . It follows easily

from the Gauss equations and the relation (R(u, v)Jw , Jz) = (R(u, v)w , z),

that ß is flat. Clearly, dim(N(ß) < 2n - 4, and thus ß = ßx 8 ß2 as in

(2.2). We claim that ß2 = 0. Assume otherwise. We choose orthonormal bases



428 MARCOS DAJCZER

{í, n) , {î, tj} of NpM, such that S(ßi ) = span{¿ © {} . Thus,

(3.1) (a(x,y),tl) = (a(x,Jy),cl)   for all xTpM , y e V,

where V = ker(/?2) c TpM. Then dim V = 2n-2, and ß(x ,v) = ß{(x,v) for

all x e TpM, v € V. In particular (ß(x, v), n®{0}) = (ß(x , v), {0}®fj) = 0,

since iÇ®ï,n® {0}) = (¿¡ ® t\, {0} ® fj) = 0. We obtain

(3.2) iaix,v),n) = 0 = iaix,Jv),fj)    for all x e TpM , v e V.

We conclude from (3.2) that either fj = ±n or JV n V c N(a), where the

second possibility is in contradiction with the assumption of the theorem, since

dimJV r\V>2n-4. In particular, it follows that t] = ±t¡, and from (3.1)

we have (a(x,y),£,) = ±(a(x ,Jy) ,{> = (a(x , J2 y), {> = -(a(x,y),^) =0.

Thus f c /V(a) which is not possible. This proves our claim.

We have from ß - ßi that

(a(x , y), a(w , z)) = (a(x , Jy), a(w , Jz)),    for all x , y , w,, z e TpM.

In particular, ||a(x,y)|| = ||a(x,/y)|| and (a(x,y) ,q(x ,/y)) = 0. This

means that the complex structure / of TM extends to an almost complex

structure J on the tangent bundle of R2"+2 restricted to /, such that the

second fundamental form a is complex linear, i.e.,

(3.3) a(x,Jy) = Ja(x,y) = a(Jx,y).

For dimension reasons, the orthogonal transformation / restricted to the nor-

mal bundle NM is parallel in the normal connection. Now, it follows easily

using (3.3) that J is constant in R2"+2 along M . This completes the proof of

the theorem.
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