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THE NUMBER OF INDECOMPOSABLE SEQUENCES

OVER AN ARTIN ALGEBRA OF FINITE TYPE

STEPHEN P. CORWIN

(Communicated by Donald Passman)

Abstract. Let A be an artin algebra of finite representation type. For a finitely

generated A-module C , there are only finitely many f.g. modules A such that

0—* A —> B —<C—» 0 is indecomposable as a short exact sequence.

Let A be an artin algebra of finite representation type and mod A the cate-

gory of finitely generated (f.g.) left A modules. If X and C are in mod A, we

write A(X ,C) for homA(X ,C) and P(X ,C) for the submodule of A(X,C)

comprising those maps / : X —► C for which there exists a factorization

X —f—> C

\      /

P

with P projective. Also, let Tr and D be the usual transpose and dual. In

this setting, Theorem 5.7 in M. Auslander's paper [A] may be stated as follows.

Theorem A. Let C be in mod A. Let Ax.Am be a complete list of all non-

injective indecomposable modules in mod A and let Xi -TxY>Ai. For each i,

h(Xt, C)/P(Xi, C) is an (End X;.)°F'-module of finite length. Let St[, ... , St¡¡

be a complete set of nonisomorphic simple (End X^-modules, and for each

(End Xfp-submodule H of A{X¡,C) containing P(Xj,C) let nx(At,H), ... ,
nd(Ai,H)   be  the  uniquely determined nonnegative  integers so  that  the

(End Xf*-socle of A(X¡ ,C)/H is isomorphic to \\%\S"M,,H) ■ Finally let

n(At) = max{nj(A¡ ,H)} as j runs through l,2,...,dj andas H runs

through all (End X¡)°v-submodules of A(Xi, C) containing P(XitC). Then

(1) n(A.) is finite;

(2) if k> n(A¡) and 0^Ak-?->B->C->0 is exact, then Ak contains a

submodule A1 (isomorphic to A{ _"(/,,) ) such that g(A') is a summand

_of B.
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Keeping the notation of Theorem A we have

Theorem 1. Fix C in mod A. Then there are only a finite number of modules

A in mod A for which 0 —> A -^-+ B —► C —► 0 is indecomposable as a short

exact sequence. In fact, if A has an injective summand, or if A ~ JJ™, APi with

pi > n(A¡) for some i, the sequence decomposes.

Proof. If A has an injective summand then clearly the sequence decomposes.

Suppose pi > n(A¡), and form the pushout diagram

0 B C 0

surj

0 - Ap' D C 0.

Because p¡>n(A¡), Ap' has a submodule À for which h'(A') is a summand

of D (so A' is actually a summand of Ap> ) by Theorem A. Let A", A1" be

such that A1 © A" — A and A' ® A1" = Ap' . Then we have a commutative

diagram

A © A B C

-> A ®A

i:u

[s *°]
Q(^')©ß' c

l'   5in which q = h'\A,  is an isomorphism and « = h'\A,n . Then /i' -

g(A ) is a monomorphism which is split by B -^-+ a(yl') ——> ̂ ', so g(^') is

a summand of 5 . This split monomorphism and the split inclusion of Á into

A are coherent, i.e., the diagram

A>

incl î|        proj

rli
¿?(^

IT à  l oßx

—       B

commutes both ways. Thus the exact sequence 0 —► A

a summand of 0—* A —»5—>C->0.

«Ii
c?(^') 0^0 is

If we let R be a local PID which is also a fc-algebra, we get some interesting

consequences. We let / and g be matrices over R , and say that X — F, /

F0 is a representation of the diagram ^2 = over R , where

F2, F, , and FQ are free i?-modules (see, e.g., [DR]). If / and g are both
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t x t matrices with nonzero determinant, then the sequence e - 0 ^ A —► 5 -+

C —► 0 is naturally associated with X, where A = cokex(f), B = cokex(gf),

and C = cokex(g), by the following commutative diagram:

0

F,

gf

B

C

C 0.

Two representations X, X  axe said to be isomorphic if there is a commutative

diagram

f
FL -► F[ + F'

i      gl   "0

with q , ß, and y isomorphisms. It is shown in [C] that representations are

isomorphic if and only if the corresponding sequences are isomorphic.

If m is the maximal ideal of R and / is a txt matrix, we let u(f) be the

least integer « such that det(/) e m" (where m° is the set of units of R ). In

this situation Theorem 1 yields the following.

Corollary. Let g be a fixed t x t matrix with nonzero determinant, and let

v(g) = r. Then for a fixed integer «, there are only finitely many nonisomorphic

indecomposable representations X = F2 —► F2 -^-+ FQ with v(f) < n .

Proof. If 0 —► A —> B —> C —* 0 is the sequence associated with X, then the

length of an indecomposable summand of C (respectively A ) is bounded by r

(respectively « ); so every such sequence may be considered to be a sequence of

R/'nf'-modules, where 5 = max{r , «}. But R/ms is an artin algebra of finite

type, so Theorem 1 may be applied.

An application of this corollary, proved in [C], is that if v(f) < t, where t

is as above, then X must decompose.

Acknowledgment

The author would like to thank E. L. Green, who supervised the dissertation

in which these results were first obtained.



304 S. P. CORWIN

References

[A]    M. Auslander, Functors and morphisms determined by objects (R. Gordon, ed.), Lecture Notes

Pure Appl. Math., no. 37, Marcel Dekker, New York, 1976.

[C]   S. P. Corwin, Representation theory of the diagram An  over the ring k[[x]], Dissertation,

Virginia Tech, Blacksburg, Virginia.

[DR] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem.

Amer. Math. Soc, no. 173, 1976.

Department of Mathematics, Radford University, Radford, Virginia 24142


