THE NUMBER OF INDECOMPOSABLE SEQUENCES OVER AN ARTIN ALGEBRA OF FINITE TYPE

STEPHEN P. CORWIN

(Communicated by Donald Passman)

ABSTRACT. Let Λ be an artin algebra of finite representation type. For a finitely generated Λ -module C, there are only finitely many f.g. modules A such that $0 \to A \to B \to C \to 0$ is indecomposable as a short exact sequence.

Let Λ be an artin algebra of finite representation type and mod Λ the category of finitely generated (f.g.) left Λ modules. If X and C are in mod Λ , we write $_{\Lambda}(X,C)$ for hom $_{\Lambda}(X,C)$ and P(X,C) for the submodule of $_{\Lambda}(X,C)$ comprising those maps $f: X \to C$ for which there exists a factorization

$$X \xrightarrow{f} C$$

$$\searrow \nearrow$$

$$P$$

with P projective. Also, let Tr and D be the usual transpose and dual. In this setting, Theorem 5.7 in M. Auslander's paper [A] may be stated as follows.

Theorem A. Let C be in $\operatorname{mod} \Lambda$. Let A_1, \ldots, A_m be a complete list of all non-injective indecomposable modules in $\operatorname{mod} \Lambda$ and let $X_i = \operatorname{TrD} A_i$. For each i, $\Lambda(X_i,C)/P(X_i,C)$ is an $(\operatorname{End} X_i)^{\operatorname{op}}$ -module of finite length. Let $S_{i_1}, \ldots, S_{i_{d_i}}$ be a complete set of nonisomorphic simple $(\operatorname{End} X_i)^{\operatorname{op}}$ -modules, and for each $(\operatorname{End} X_i)^{\operatorname{op}}$ -submodule H of $\Lambda(X_i,C)$ containing $P(X_i,C)$ let $n_1(A_i,H),\ldots,n_{d_i}(A_i,H)$ be the uniquely determined nonnegative integers so that the $(\operatorname{End} X_i)^{\operatorname{op}}$ -socle of $\Lambda(X_i,C)/H$ is isomorphic to $\prod_{j=1}^{d_i} S_{i_j}^{n_j(A_i,H)}$. Finally let $n(A_i) = \max\{n_j(A_i,H)\}$ as j runs through $1,2,\ldots,d_i$ and as H runs through all $(\operatorname{End} X_i)^{\operatorname{op}}$ -submodules of $\Lambda(X_i,C)$ containing $P(X_i,C)$. Then

- (1) $n(A_i)$ is finite;
- (2) if $k > n(A_i)$ and $0 \to A_i^k \xrightarrow{g} B \to C \to 0$ is exact, then A_i^k contains a submodule A' (isomorphic to $A_i^{k-n(A_i)}$) such that g(A') is a summand of B.

Received by the editors March 24, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A64, 16A35, 16A46.

302 S. P. CORWIN

Keeping the notation of Theorem A we have

Theorem 1. Fix C in $\text{mod } \Lambda$. Then there are only a finite number of modules A in $\text{mod } \Lambda$ for which $0 \to A \xrightarrow{g} B \to C \to 0$ is indecomposable as a short exact sequence. In fact, if A has an injective summand, or if $A \simeq \coprod_{i=1}^{m} A_i^{p_i}$ with $p_i > n(A_i)$ for some i, the sequence decomposes.

Proof. If A has an injective summand then clearly the sequence decomposes. Suppose $p_i > n(A_i)$, and form the pushout diagram

$$0 \longrightarrow A \xrightarrow{g} B \longrightarrow C \longrightarrow 0$$

$$\downarrow \text{surj} \qquad \qquad \parallel$$

$$0 \longrightarrow A_i^{p_i} \xrightarrow{h'} D \longrightarrow C \longrightarrow 0.$$

Because $p_i > n(A_i)$, $A_i^{p_i}$ has a submodule A' for which h'(A') is a summand of D (so A' is actually a summand of $A_i^{p_i}$) by Theorem A. Let A'', A''' be such that $A' \oplus A'' = A$ and $A' \oplus A''' = A_i^{p_i}$. Then we have a commutative diagram

$$0 \longrightarrow A' \oplus A'' \xrightarrow{g} B \longrightarrow C \longrightarrow 0$$

$$\downarrow \begin{bmatrix} 1 & 0 \\ 0 & \rho \end{bmatrix} \qquad \downarrow \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \parallel$$

$$0 \longrightarrow A' \oplus A''' \xrightarrow{G \longrightarrow 0} \alpha(A') \oplus B' \longrightarrow C \longrightarrow 0$$

in which $\alpha = h'|_{A'}$ is an isomorphism and $h = h'|_{A'''}$. Then $A' \xrightarrow{1} A' \xrightarrow{g} g(A')$ is a monomorphism which is split by $B \xrightarrow{\mu_1} \alpha(A') \xrightarrow{\alpha^{-1}} A'$, so g(A') is a summand of B. This split monomorphism and the split inclusion of A' into A are *coherent*, i.e., the diagram

$$\begin{array}{ccc} A' & & \stackrel{g|'_A}{\to} g(A') \\ \operatorname{incl} \uparrow \downarrow & \operatorname{proj} & \downarrow \uparrow \alpha^{-1} \circ \mu_1 \\ A' \oplus A'' & & \stackrel{g}{\to} B \end{array}$$

commutes both ways. Thus the exact sequence $0 \to A' \xrightarrow{g|_A'} g(A') \to 0 \to 0$ is a summand of $0 \to A \to B \to C \to 0$.

If we let R be a local PID which is also a k-algebra, we get some interesting consequences. We let f and g be matrices over R, and say that $X = F_2 \xrightarrow{f} F_1 \xrightarrow{g} F_0$ is a representation of the diagram $A_2 = \cdot \to \cdot \to \cdot$ over R, where F_2 , F_1 , and F_0 are free R-modules (see, e.g., [DR]). If f and g are both

 $t \times t$ matrices with nonzero determinant, then the sequence $\varepsilon = 0 \to A \to B \to C \to 0$ is naturally associated with X, where $A = \operatorname{coker}(f)$, $B = \operatorname{coker}(gf)$, and $C = \operatorname{coker}(g)$, by the following commutative diagram:

Two representations X, X' are said to be isomorphic if there is a commutative diagram

$$F_{2} \xrightarrow{f} F_{1} \xrightarrow{g} F_{0}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\gamma}$$

$$F'_{2} \xrightarrow{f'} F'_{1} \xrightarrow{g'} F'_{0}$$

with α , β , and γ isomorphisms. It is shown in [C] that representations are isomorphic if and only if the corresponding sequences are isomorphic.

If \underline{m} is the maximal ideal of R and f is a $t \times t$ matrix, we let $\nu(f)$ be the least integer n such that $\det(f) \in \underline{m}^n$ (where \underline{m}^0 is the set of units of R). In this situation Theorem 1 yields the following.

Corollary. Let g be a fixed $t \times t$ matrix with nonzero determinant, and let $\nu(g) = r$. Then for a fixed integer n, there are only finitely many nonisomorphic indecomposable representations $X = F_2 \xrightarrow{f} F_2 \xrightarrow{g} F_0$ with $\nu(f) \leq n$.

Proof. If $0 \to A \to B \to C \to 0$ is the sequence associated with X, then the length of an indecomposable summand of C (respectively A) is bounded by r (respectively n); so every such sequence may be considered to be a sequence of R/\underline{m}^s -modules, where $s = \max\{r, n\}$. But R/\underline{m}^s is an artin algebra of finite type, so Theorem 1 may be applied.

An application of this corollary, proved in [C], is that if $\nu(f) < t$, where t is as above, then X must decompose.

ACKNOWLEDGMENT

The author would like to thank E. L. Green, who supervised the dissertation in which these results were first obtained.

304 S. P. CORWIN

REFERENCES

- [A] M. Auslander, Functors and morphisms determined by objects (R. Gordon, ed.), Lecture Notes Pure Appl. Math., no. 37, Marcel Dekker, New York, 1976.
- [C] S. P. Corwin, Representation theory of the diagram A_n over the ring k[[x]], Dissertation, Virginia Tech, Blacksburg, Virginia.
- [DR] V. Dlab and C. M. Ringel, *Indecomposable representations of graphs and algebras*, Mem. Amer. Math. Soc., no. 173, 1976.

Department of Mathematics, Radford University, Radford, Virginia 24142