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(Communicated by J. Marshall Ash)

Let us say that the sequence of complex numbers (X ) is separated if there

exists e > 0 such that \X. - Xk\> e (j ¿ k). For 0 < p < oo let Ep denote

the class of entire functions of exponential type whose restriction to the real

line lies in the Lebesgue space Lp . A subharmonicity argument establishes the

following classical result:

Theorem A. Suppose (X ) is a separated sequence of complex numbers with

bounded imaginary parts. Then

(1) £|/(A,)|'<oo

for every f eEp.

(Theorem 17 on p. 96 of [Y] asserts this under the additional hypothesis

that the X¡ be real, but the argument in [Y] proves the slightly more general

statement above.)

The purpose of this note is to point out that this result is sharp in a certain

sense, settling a question posed on p. 221 of [Y]:

Theorem 1. Suppose p > 0 and (X) is a sequence of complex numbers satisfying

( 1 ) for each f e Ep. Then the X- have bounded imaginary parts and can be

partitioned into a finite union of separated sequences.

The proof will be a simple example of what is sometimes referred to as a

"gliding hump" argument:

Proof. Suppose the A. satisfy (1) for every / e Ep . We leave it to the reader

to show that Im (A,) is bounded; this is analogous to the argument below, but

simpler. Supposing this, we show that the A. can be partitioned into a finite

union of separated sequences. We need only show that the number of A, with

real part lying in the interval [ß, ß + 1] is bounded. Supposing that this is

false, we shall construct an f e Ep for which ( 1 ) fails: Choose A > 1 so that

|Im(A.)| < A for all ;'. Now choose g € Ep with \g(z)\ > 1  for all z e C
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with \z\ < 2A. We claim that if constants ck > 0 and ßk e R are chosen

properly, then f(z) = £fc ckg(z + /?fc) will give the required example.

Note first that if we take ck decreasing to zero fast enough then we will

have / e Ep regardless of our choice of (ßk). Fix such a sequence (ck). Let

I» = {j: Re(A ) € [ß , ß + 1]} , so that our hypothesis on the A becomes the

statement that the cardinality of /„ is unbounded. Suppose we have chosen

ßx, ... ,ßN in such a way that

(2„) £ \Wj)\P > 1       (fc=l.N),

where we have written fN(z) = Z¡f=i ckS(z + ßk) • Now, Theorem A shows

that g(z) approaches zero as z tends to infinity within the strip |Im(z)| < A.

Thus, merely to take ßN+x large enough will accomplish two things: It will

ensure that (2^) remains true, at least for 1 < k < N, when fN is replaced by

fN+x, and it will ensure that \fN(Xj)\ < \ for j e / „ . If in addition to taking

ßN+x large we choose ßN+x so that the cardinality of /„ ] is sufficiently large

(depending on c„,. and p ) then we have

(2^+1) E IW^)IP > 1       (*-l.JV+1).

Now fix fc and let N tend to infinity: £,e/   1/(^)1" > 1 > so that

£|/(Ay)|* = oo,
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