FUNCTIONS OF EXPONENTIAL TYPE AND SEPARATED SEQUENCES

DAVID C. ULLRICH

(Communicated by J. Marshall Ash)

Let us say that the sequence of complex numbers (λ_j) is separated if there exists $\varepsilon>0$ such that $|\lambda_j-\lambda_k|\geq \varepsilon$ $(j\neq k)$. For $0< p<\infty$ let E^p denote the class of entire functions of exponential type whose restriction to the real line lies in the Lebesgue space L^p . A subharmonicity argument establishes the following classical result:

Theorem A. Suppose (λ_j) is a separated sequence of complex numbers with bounded imaginary parts. Then

for every $f \in E^p$.

(Theorem 17 on p. 96 of [Y] asserts this under the additional hypothesis that the λ_j be real, but the argument in [Y] proves the slightly more general statement above.)

The purpose of this note is to point out that this result is sharp in a certain sense, settling a question posed on p. 221 of [Y]:

Theorem 1. Suppose p > 0 and (λ_j) is a sequence of complex numbers satisfying (1) for each $f \in E^p$. Then the λ_j have bounded imaginary parts and can be partitioned into a finite union of separated sequences.

The proof will be a simple example of what is sometimes referred to as a "gliding hump" argument:

Proof. Suppose the λ_j satisfy (1) for every $f \in E^p$. We leave it to the reader to show that $\operatorname{Im}(\lambda_j)$ is bounded; this is analogous to the argument below, but simpler. Supposing this, we show that the λ_j can be partitioned into a finite union of separated sequences. We need only show that the number of λ_j with real part lying in the interval $[\beta, \beta+1]$ is bounded. Supposing that this is false, we shall construct an $f \in E^p$ for which (1) fails: Choose $A \ge 1$ so that $|\operatorname{Im}(\lambda_j)| \le A$ for all j. Now choose $g \in E^p$ with $|g(z)| \ge 1$ for all $z \in \mathbb{C}$

Received by the editors July 6, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 42A70; Secondary 30D55.

524 D. C. ULLRICH

with $|z| \le 2A$. We claim that if constants $c_k > 0$ and $\beta_k \in \mathbb{R}$ are chosen properly, then $f(z) = \sum_k c_k g(z + \beta_k)$ will give the required example.

Note first that if we take c_k decreasing to zero fast enough then we will have $f \in E^p$ regardless of our choice of (β_k) . Fix such a sequence (c_k) . Let $I_{\beta} = \{j \colon \operatorname{Re}(\lambda_j) \in [\beta, \beta+1]\}$, so that our hypothesis on the λ_j becomes the statement that the cardinality of I_{β} is unbounded. Suppose we have chosen β_1, \ldots, β_N in such a way that

$$(2_N) \qquad \sum_{j \in I_{\theta_k}} \left| f_N(\lambda_j) \right|^p > 1 \qquad (k = 1, \ldots, N),$$

where we have written $f_N(z)=\sum_{k=1}^N c_k g(z+\beta_k)$. Now, Theorem A shows that g(z) approaches zero as z tends to infinity within the strip $|\mathrm{Im}(z)| \leq A$. Thus, merely to take β_{N+1} large enough will accomplish two things: It will ensure that (2_N) remains true, at least for $1\leq k\leq N$, when f_N is replaced by f_{N+1} , and it will ensure that $|f_N(\lambda_j)|\leq \frac{1}{2}$ for $j\in I_{\beta_{N+1}}$. If in addition to taking β_{N+1} large we choose β_{N+1} so that the cardinality of $I_{\beta_{N+1}}$ is sufficiently large (depending on c_{N+1} and p) then we have

$$(2_{N+1}) \qquad \sum_{j \in I_{\beta_k}} |f_{N+1}(\lambda_j)|^p > 1 \qquad (k = 1, ..., N+1).$$

Now fix k and let N tend to infinity: $\sum_{j \in I_{\beta_k}} |f(\lambda_j)|^p \ge 1$, so that

$$\sum_{j} |f(\lambda_{j})|^{p} = \infty.$$

REFERENCES

[Y] R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078