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Abstract. Let G be a finite group, all of whose irreducible complex characters

are induced from linear characters. Suppose that G has a normal series of Hall

subgroups G i < G such that  Gq = I , G„ = G, and  \G¡ : G,_i|  is a power of

a prime, for each ;' = 1.n . If N is a normal subgroup of G, then every

irreducible complex character of N is induced from a linear character.

1. Introduction

A finite group is said to be an A/-group if each of its irreducible characters

can be induced from a linear character of some subgroup. In [3], Dornhoff

showed that normal Hall subgroups of A/-groups were A/-groups, and asked

if normal subgroups of Af-groups were again A/-groups. In [1], Dade gave an

example of an M -group which had a normal subgroup which was not an M-

group. Dade's example, however, depended very strongly on the use of the prime

2. Therefore, the question of whether normal subgroups of odd Af-groups were

again Af-groups was left open, and remains so to the present.

The most straightforward approach to the problem of normal subgroups is to

try to work "one character at a time". That is to say, try to prove that whenever

a monomial character is restricted to a normal subgroup the irreducible con-

stituents of the restriction are also monomial characters. Unfortunately, this

approach does not work. Berger has given an example (see [5], Example 6.4)

of a group which is the semidirect product of an extra-special 5-group by an

extra-special 3-group, and which has a monomial character whose restriction to

a normal subgroup has an irreducible constituent which is not monomial. This

group, of course, is not an Af-group. In fact, in this paper it will be shown that

no Af-group with such a simple structure can be a counterexample to the ques-

tion of whether normal subgroups of Af-groups are again Af-groups. Namely,

the following is shown:

Theorem. Let G be an M-group with a Sylow tower.  Then every normal sub-

group of G is again an M-group.
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2. Inductors

The difficulty in trying to determine whether or not a given character of a

group is monomial is that in general there is no set way of knowing where to find

a subgroup with a linear character to induce to the given character. Inductors

provide us with subgroups, many of whose irreducible characters induce irre-

ducibly. When we can conclude that these irreducible characters are themselves

induced in the same manner as the characters that they are inducing, then we

have a means of searching for an appropriate subgroup to induce our original

monomial character.

1. Definition. We shall call (G,N ,6) a character trio if N<G and 0 G Irr(JV).

If, in addition, 6 is invariant in G, we shall say that (G,N ,6) is a character

triple. Let (G,N ,6) be a character trio and let G0 be the inertia subgroup

of 6 in G. Let H < Ge and (H ,M ,<p) be a character triple. Then the

triple (H ,M ,(p) is called an inductor for the trio (G, N , 6) if Ge = HN , if

M = H n N, and if 8 = <p   . Pictorially, we have:

The notions of character triple and inductor can both be found in the work

of Isaacs (see [7]). The idea of an inductor is similar to the idea of a search

introduced by Parks in [8], and is used here to much the same purpose.

Note that an inductor for the character trio (G,N,0) is the same thing as

an inductor for the character triple (Ge , N , 6). In particular, (Gg,N ,6) is

an inductor for (G,N ,6). Also note that if (H ,M ,<p) is an inductor for

(G.N ,6) and (T , K , y/) is an inductor for (H ,M ,<p), then (T , K, y/) is an

inductor for (G, N ,8).

The name inductor is justified by the following lemma.

2.    Lemma. Let (G,N ,6) be a character trio and let (H ,N ,(p) be an inductor

for (G.N ,6).   The character induction affords a bijection between the set of

irreducible constituents of <p    and the set of irreducible constituents of 0  .

Proof. This is just Corollary 4.3 of [6] combined with Theorem 6.11 of [4].   □

One of the most important ways of producing inductors is through inertia

subgroups. The following lemma is evident in the proof of Theorem 7.1 in [2].

A proof is included here for the sake of completeness.
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3. Lemma. Let H be a finite group and let A and M be normal subgroups

of H with A < M. Let tp be an irreducible character of M which is invariant

in H and let X be an irreducible constituent of q>A. If Hx and Mx are the

inertia subgroups for X in H and M, respectively, and if tpx is the Clifford

correspondent for <p with respect to X, then (Hx,Mx,(px) is an inductor for

(H ,M ,<p).

A ,X

Proof. Since q> is invariant in H, the //-conjugates of X are precisely the

irreducible constituents of y>A , which are precisely the Af-conjugates of X.

Therefore, by the same argument as that for the Frattini argument, we have

that H = MHX. That Mx = M C\HX follows immediately from the definitions

of Af^ and Hx. That (<px) = <p is given to us by Clifford's Theorem (see

Theorem 6.11 of [4]).   D

Let (G ,N ,8) be a character trio and suppose we want to show that all the

characters lying over 8 are monomial. When arguing by induction it would

be useful to know when we can find a well-behaved inductor (H ,M ,q>) for

(G,N ,8) such that, if y/ G Irr(//) which lies over <p and if yi = x s Irr(C7),

then \p is monomial whenever x is. For if we have such conditions, then

Lemma 2 tells us that we may drop down to the well-behaved character triple

(H ,M ,<p).

4. Definition. Let (G ,N ,8) be a character trio and let (H ,M ,tp) be an in-

ductor for (G,N,8). Then we shall call (H ,M ,tp) a monomial-preserving

inductor for (G,N,8) if every irreducible constituent, y/, of tp is mono-

mial whenever y/ G Irr(C7) is. We shall call (H ,M ,q>) a linear inductor for

(G,N ,8) if (2>(1)= 1.

As we saw with Lemma 3, inertia subgroups give us a way of generating

inductors, but we need to know when we can conclude that the inductors so

obtained are monomial preserving. (They need not be in general.) The next two

lemmas give us some conditions under which we may draw such conclusions.

5. Lemma. Let H be a finite group, let A be a normal subgroup of G, and

let X be a linear character of A . Then (Hx ,A,X) is a monomial-preserving

inductor for (H ,A,X).

Proof. This is an easy consequence of Lemma 4.1 of [2].   D
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6. Lemma. Let Q be a normal nilpotent subgroup of G, and let 8 be an

irreducible character of Q. If Ge is the inertia subgroup for 8 in G, then

(Ge,Q ,8) is a monomial-preserving inductor for (G ,Q ,8).

Proof. This is directly implied by Theorem 3.1 of [8].   □

Earlier it was stated that if (H,M,q>) were a well-behaved monomial-

preserving inductor for (G ,N ,8) then by using induction on the group's order,

we could reduce to considering the case of G = H. The type of good behavior

that it will turn out we need is for all of the Abelian subgroups of M/ ker <p

which are normal in /// ker q> to be under tight control.

7. Definition. Let TV be a normal subgroup of G. Suppose that for every

subgroup A < N, if A is Abelian and A is normal in G, then A is cyclic and

A < Z(G). Then N is said to be well situated in G.

8. Lemma. Let Q be a nilpotent normal subgroup of G and let 8 G Irr(ß).

Then there exists a monomial-preserving inductor (H ,M ,y>) for (G ,Q ,8) with

M/ ker y> well situated in H/ ker <p.

Proof. By Lemma 6 we have that (Ge ,Q ,8) is a monomial-preserving inductor

for (G,Q,8). Among those inductors for (G,Q,8) which are monomial-

preserving choose an inductor (H,M,<p) with \H\ minimal. Suppose that

M/ ker tp is not well situated in /// ker <p .

Let A be a normal subgroup of H which is contained in Af, and contains

ker<p. Suppose that A/ker<p is Abelian. Then every irreducible constituent of

<pA is linear. Let X be one such. Since <p is //-invariant, A/kerç> is cyclic

and central in /// ker çj iff A is invariant in H. Therefore, since Af/ ker <p is

not well situated in H, there exists A < M with A< H and there exists an

irreducible constituent X of <pA with X( 1 ) = 1, but such that X is not invariant

in H.

Since cp is invariant in H, by Lemma 3 we have that (Hx ,Mx,<px) is an

inductor for (H ,M ,q>). In addition, by Lemma 5, since A(l) = 1, we have

that (Hx ,A,X) is a monomial-preserving inductor for (H ,A ,X). Therefore,
JJ LI

every irreducible constituent y/ of X x is monomial whenever y/ is. Now,

q>x is an irreducible constituent of A J., so every irreducible constituent of

(y>x) . is an irreducible constituent A *. Hence, (Hx,Mx,tpx) is a monomial-

preserving inductor for (H, M, <p). However, a monomial-preserving inductor

for a monomial-preserving inductor for (G.Q.8) is a monomial-preserving

inductor for (G,Q,8). Since Hx < H, this contradicts the minimality of

\H\.   D

This next result will be a key step in the proof that all subnormal subgroups

of an Af-group with a Sylow tower are Af-groups.

9. Lemma. Let Q be a normal Hall n-subgroup of G and suppose that Q

is nilpotent.  Let 8 G Irr(g) and suppose that every irreducible constituent of
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8 is monomial. Then there exists a linear monomial-preserving inductor for

(G.Q.8).
Proof. The proof is by induction on |G|. By Lemma 8 there exists a monomial-

preserving inductor (H ,M ,<p) for (G,Q,8) suchthat M/kerf is well sit-

uated in H/ ker cp . Since (H ,M ,<p) is an inductor for (G ,Q ,8), we have

that Af = H n Q. Therefore, Af is a normal Hall subgroup of H since Q

is a normal Hall subgroup of G. Since (H ,M ,<p) is a monomial-preserving

inductor for (G,Q ,8) and every irreducible constituent of 8 is monomial,

by Lemma 2 every irreducible constituent of tp is monomial. Therefore,

since a linear monomial inductor for (//, Af ,<p) is a linear monomial induc-

tor for (G,Q,8), by the inductive hypothesis on \G\ we may assume that

(G,Q,8) = (H ,M ,tp). Then, 8 is invariant in G and ß/kerö is well sit-

uated in G/ker8 . Since 8 is invariant in G, we have that kerf? < ker* for

every x a° irreducible constituent of 8G. Therefore, again by the inductive

hypothesis, we may assume that kerö = 1. That is, we can assume that 8 is

faithful and (/-invariant, and that Q is well situated in G.

Since Q is well situated in G, every characteristic Abelian subgroup of Q

must be contained in the center of Q . Since Q is nilpotent, this implies that

Q has nilpotence class at most 2. That is, Q/Z(Q) is Abelian. Our goal is to

show that Q is Abelian.

Since 8 is invariant in G and Q is a Hall subgroup of G, we have that 8

extends to G (see Corollary 8.16 in [4]). Let x be such an extension. Then

X is an irreducible constituent of 8 , and hence is monomial. Therefore,

there exists L < G and A G Irr(L) such that A(l) = 1 and A = X- Now,

\G : L\ = x(l) = 8(1) is a 7t-number and \G : Q\ is a ri-number. Therefore,

G = LQ . In addition, (XLnQf = (XG)Q = XQ = B.

Let A = LnQ . Since (XA)Q = 8, it follows that Z(Q) < A . Therefore, since

Q/Z(Q) is Abelian, A<Q . Moreover, since Q<G, we have that A = LnQ<L,

and hence A<LQ = G. Now, A is an irreducible constituent of 8A and A is

linear. Therefore, since 6 is faithful, it follows that A is Abelian. However,

since Q is well situated in G, we must have A < Z(Q). Since (XA) € Irr(Q),

the only way that we can have A < Z(Q) is if A = Z(Q) = Q .   G

3. Conclusion

10. Theorem. Let G be a group with a Sylow tower. Let N be a subnormal

subgroup of G. Suppose that there exists a normal Hall subgroup Q of G

such that Q < N and such that Q is nilpotent. Further suppose there exists

8 G Irr(ß) such that every irreducible constituent of 8 is monomial. Then

every irreducible constituent of 8    is monomial.

Proof. We shall proceed by induction first on |C7|, second on \G: Q\, and third

on \G : N\. Suppose that G is a counterexample. By the inductive hypothesis

on |C?| we must have that coreG(kerô) = 1 .
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Since ô is a normal Hall subgroup of G which is nilpotent and every ir-

reducible constituent of 8 is monomial, by Lemma 9 there exists a linear

monomial-preserving inductor, (H,T,X), for (G,Q,8). Now, since

(H ,T, A) is an inductor for (G, Q , 8), we have that HQ = Ge, that T »

//nô, and that XQ = 8 . Since ß is a normal Hall subgroup of G, we have

that r is a normal Hall subgroup of H. Let K = H n N. Then AT is a

subnormal subgroup of // containing T since TV is a subnormal subgroup of

G containing Q . Pictorially, we have:

Q
I

G N

H N„

\   /    \

\      /
T ,X

it
By Lemma 2 ever irreducible constituent of A induces to an irreducible con-

stituent of 8 . Therefore, since every irreducible constituent of 8 is mono-

mial, and (H,T,A) is monomial preserving, every irreducible constituent of
II

X is monomial. Assume that H < G. Then, by the inductive hypothesis on

|C7|, with H in place of G, with K in place of N, with T in place of ß,

and with A in place of 8 , we have that every irreducible constituent of A is

monomial. Since (H ,T , A) is an inductor for (G ,Q ,8), we have that A is

invariant in H and hence in K, that

KQ = (Hn N)Q = HQnN = GgnN = Ng,

that

/<:nß = //n/vnß = //nß = :r,

and that X =8. Therefore, (K.T.X) is an inductor for (N.Q.8). Ap-

plying Lemma 2 to (N, ß ,8) and (K ,T ,X) we have that every irreducible

constituent of 8 is induced from an irreducible constituent of A . However,

since every irreducible constituent of XK is monomial, this implies that every

irreducible constituent of 8 is monomial, contradicting that G is a counterex-

ample. Thus, we have that G = H, and therefore, 8 is linear and invariant in

G. Since 8 is also faithful, we have that ß < Z(G).

Let R be a normal Hall subgroup of G such that Q < R and \R : Q\

is a power of a prime, /?. (We can find such an R since ß is a normal

Hall subgroup of G and G has a Sylow tower.) Note that R is nilpotent

since ß < Z(G). Let <p be an irreducible constituent of 8 . Then every

irreducible constituent of <p    is an irreducible constituent of 8   , and hence
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every irreducible constituent of y> is monomial. By the inductive hypothesis

on \G : Q\, if R < N, then every irreducible constituent of tp is monomial.

Since this is true for every irreducible constituent of 8 and since every ir-

reducible constituent of ft. lies over some irreducible constituent of 8R , we

have that every irreducible constituent of ft is monomial. Therefore, we must

have that R^N.

Now, R is a normal subgroup of G, so NR is a subnormal subgroup of G

since N is. Therefore, since NR > N, by the inductive hypothesis on \G : N\,

with NR in place of N, we have that every irreducible constituent of 8 is

monomial. If NR < G, then by the inductive hypothesis on |G|, this time with

NR in place of G, we would have that every irreducible constituent of 8 is

monomial. Therefore, we must have G — NR . Furthermore, since Q < Nf)R,

we must have that \G : N\ = \NR : N\ divides \R : Q\ and hence is a power of

P-

If N < M < G with M<G, then, by the inductive hypothesis on \G : N\ with

Af in place of N, every irreducible constituent of 8 is monomial. Then, by

the inductive hypothesis on |t7|, using Af in place of G, we have that every

irreducible constituent of 8 is monomial. Therefore, we must have that N

is maximal normal in G and \G : N\ = P ■

Let n be an irreducible constituent of 8 which is not monomial. Let

S = N C\R and let y/ be an irreducible constituent of ns . Since S < R , we

have that S is nilpotent. Also, since N and R are both normal subgroups of

G, so is S. Note that 8 is an irreducible constituent of y/Q and hence that
c c

every irreducible constituent of y/    is an irreducible constituent of 8   , and

thus is monomial.
G

S ,w

Q,8

Consider G  , the inertia subgroup for  y/  in  G.   Since 5  is nilpotent,

by Lemma 6 we have that (G  , S, yi) is a monomial-preserving inductor for

(G,S, y/). Therefore, since every irreducible constituent of y/ is monomial,

every irreducible constituent of y/ " is monomial. Suppose that G < N.

Then G is also the inertia subgroup for yi in N, and every irreducible con-

stituent of y/ is induced from an irreducible constituent of ip ". However,

since every irreducible constituent of y/ " is monomial, this implies that every

irreducible constituent of y/   , and in particular n, is monomial.  Thus, we
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must have that G   £ N. However, since TV is a maximal normal subgroup of

G, we must have G - NGV .

Now, S < N n Gw , so \G:GV\ = \NGV : G \ = \N : N n G\ which divides

|JV : S\= \N<: NnR\ = \NR :R\ = \G:R\. Therefore, since R is a normal Hall
subgroup of G we have that R < G . That is, we have that y/ is invariant in

R . Since \R : S\ = \G : N\ - p , it follows that every irreducible constituent of

y/R is an extension of y/

°\

R.i

S ,y/

Q.8

Let x be an irreducible constituent of n and let £ be an irreducible con-

stituent of Xr such that y/ is an irreducible constituent of ¿fs. Then £ is

an extension of y/, and hence, y/(\) = £(1). Let n - n(\R\). Then, since

R is a Hall 7r-subgroup of G, we have that the 7r-part of the degree of x

is X(l)n = £(1) ■ Likewise, we have that »7(1)^ = v(l). Therefore, since

V(l) = ¿(1) and \G:N\ = p isa n -number and *(1) divides \G : N\n(\), it

follows that *(1) = 7(1).

Now, x is an irreducible constituent of 8 , and as such is monomial. Let

L < G and Ç G Irr(L) such that Ç(\) = 1 and Ç = * . Since xN = >/> we

have L £ N . Therefore, G= LN and

>7 = ^ = (^G)w = (CLnNf

so ?/ is monomial.   D

11.    Corollary. Let G be an M-group with a Sylow tower. Then every subnor-

mal subgroup of G is an M-group.

Proof. Let ß = 1 and 8 = 1 in Theorem 10.   D
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