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STABLE ISOMORPHISM OF HEREDITARY C'-SUBALGEBRAS
AND STABLE EQUrVALENCE OF OPEN PROJECTIONS

SHUANG ZHANG

(Communicated by John B. Conway)

Abstract. We relate the stable isomorphism of two hereditary C*-subalgebras

to the stable equivalence of the corresponding open projections. We prove that

if A is completely tr-unital, then her(p) and her(#) generate the same closed

ideal of A iff p® 1 ~ q® 1 in {A®K)** iff the central supports of p and q
in A" are the same. If, in addition, p ± q , then the above three equivalent

conditions are equivalent to the condition: p <g> 1 and q <8> 1 are in the same

path component of open projections in (A® K)" .

0. Introduction

Let A be any C*-algebra. We denote the multiplier algebra of A by M (A)

and the Banach space double dual of A by A**. The Murray-von Neumann

equivalence of projections in A** is denoted by ~. The set of hereditary

C*-subalgebras of A is denoted by H (A) and the set of closed ideals of A

by 1(A). It is clear that 1(A) c H(A). Strong Morita equivalence is an

equivalence relation on H(A) (see [10] and [4]). We denote the set of strong

Morita equivalence classes of H(A) by H(A) and the set of strong Morita

equivalence classes of 1(A) by 1(A). If AQ is a hereditary C*-subalgebra of

A , we denote the strong Morita equivalence class containing AQ by [A0].

We say that a C*-algebra A is completely cr-unital if every hereditary C*-

subalgebra of A is cr-unital. It is clear that any separable C* -algebra is com-

pletely cr-unital.

It was proved in [5] that two cr-unital C*-algebras A and B are strongly

Morita equivalent iff A and B are stably isomorphic (i.e. A ® K ^ B ® K ).

Hence for a completely cr-unital C*-algebra A each class [A0] coincides with

the equivalence class [A0]s in the sense of stable isomorphism. It follows easily

from the results of [5] and [3, 2.5] that if A is cr-unital, then there is a bijection

between Ï(A) and H(A).
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It is well known that A** B p <-+ pA**p n A e //(.¿I) is a bijection be-

tween the set of open projections and the set of all hereditary C*-subalgebras

of A . Moreover central open projections correspond to closed ideals under the

bijection (see [2]). Here her(p) denotes the hereditary C*-subalgebra of A

corresponding to an open projection p in A**.

Two open projections in A*' are said to be stably equivalent if there is a

v € (A ® K)** such that vv* = p <g> 1 and v*v = q ® 1. It is clear that the

stable equivalence of open projections is an equivalence relation on the set of

open projections in A**. Let 0(A) be the set of equivalence classes of open

projections in A** under stable equivalence.

In this short note we shall show that there is a bijection 1(A) +-* O(A) and

describe the stable isomorphism of hereditary C*-subalgebras of A by the stable

equivalence of the corresponding open projections. Moreover we shall prove

that two mutually orthogonal hereditary C*-subalgebras her(p) and her(q)

are stably isomorphic iff her(p) ® K can be continuously deformed through

hereditary C*-subalgebras of A <g> K to her(q) <g> K. In particular, if two cr-

unital C*-algebras A and B are strongly Morita equivalent (or equivalently

stably isomorphic) and

"(Í Î)
is the linking algebra constructed in [5], then A <g> K and B ® K are path

connected by mutually stably isomorphic hereditary C*-subalgebras of L®K.

We think that this gives a more basic understanding of the stable isomorphism

of hereditary C*-subalgebras.

We call a hereditary C*-subalgebra her(p) of A essential if there is no

nonzero hereditary C*-subalgebra her(c7) such that xy = 0 for all x in

her(p), y in her(cj). It is equivalent that there be no nonzero open projection

q such that q J. p. Here _L means orthogonal.

1. Main result

1. Theorem. If A is a completely a-unital C*-algebra and p,q are two open

projections in A**, then the following are equivalent:

(a) her(p) and her(q) generate the same closed ideal of A .

(b) The central supports of p and q in A** are the same.

(c) p and q are stably equivalent.

If, in addition, p ± q, then the above three conditions are equivalent to:

(d) p <S> 1 and q ® 1 are in the same path component of open projections in

(A®K)**.

Consequently any one of the conditions (a)-(d) implies that her(p) <g> K ~

her(<7) ® K.

Proof, (a) «*■ (b) : Let I(p) be the ideal of A generated by her(p) for any open

projection p . It suffices to show that the central open projection corresponding

to I(p) is the central cover c(p) of p in A**.
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Let q0 be the central open projection corresponding to I(p). First of all,

p < q0 is clear since her(p) c I(p). We need only show that q0 < c(p).

Let A{ = c(p)A** HA. Then Ax is a closed ideal of A. Let qx be the

central open projection corresponding to A{. Then #, < c(p). Since pA**p c

c(/?)j4**c(¿?), her(/?) c A{. It follows that I(p) c ^4, and so q0 < qx . Thus

(b) => (c) : We show that p and c(p) are stably equivalent. Then similarly

q and c(p) are stably equivalent, and so p and q are stably equivalent.

Let I(p) be the closed ideal generated by her(p). As above I(p) = c(p)A**n

A . By hypothesis her(p) and I(p) are both cr-unital. By Lemma (6.2) in [9],

there is a sequence {a(.} c I(p) such that a ¡a* e her(p) for all i > 1 and

Y^Hi a*iai = C(P) witn convergence in the strict topology in M(I(p)).

Define u = ^2°ll a¡®en , then it is routine to check that the sum converges in

the strict topology in M(I(p)®K) and uu — c(p)®en and uu <p®\ (see

the proof of Lemma (2.4) of [3]), where we need the fact that a¡a* € her(p)

implies a*pai = a*ai for any i > 1. Since M(I(p) eg) Ä') c (/(/>) eg) A:)** c

(,4 eg> #)** and the strict topology of M(I(p)®K) is stronger than the relative

uZ-topology induced by the one of (I(p) ® K)**, u = Y^l\ a¡ <8> en converges

in the if'-topology of (I(p)® K)** and so it converges in the w* -topology of

(A ® K)**. Now the proof of Lemma (2.5) of [3] can be repeated to obtain a

partial isometry v e (A eg) K)** such that v*v = c(p) ® 1 and vv* = p®\.

(c) =► (b) : Let c(p cg> 1) and c(q cg> 1) be the central supports of p ®1 and

q eg) 1 in (/Í cgi /C)**, respectively. Since p eg) 1 ~ q eg) 1, c(p eg) 1) = c(c7 eg) 1) by

[7, 6.2.8]. It is easy to check that c(pegi 1) = c(p)® 1 and c(q® 1) = c((?)eg) 1.

It follows that c(p) = c(q).

(a) implies that her(p) <g> AT ~ her(c7) eg) K since her(p) and her(c7) are cr-

unital and strongly Morita equivalent ([3, 2.5]).

(d) => (c) since p eg) 1 and q <S> 1 are unitarily equivalent. It is a well known

fact that two projections in a C* -algebra are unitarily equivalent if the distance

(in norm) between them is less than one.

(a) => (d) : Since her(p) and her(c7) generate the same closed ideal /,

her(p) and her(cj) are strongly Morita equivalent. Let X = [hex(p)I her(q)]~~ =

[her(p)A her(¿7)]- . Then X c A and I isa her(p) - her(c7)-imprimitivity

bimodule. Let

_ ihtx(p)       X    \

\    X       her(c7) /

be the linking algebra of [5]. Since p±q, L can be identified with a subalgebra

of A and so L<8>K can be identified with a subalgebra of A eg» K. Consequently

M(L cgi K) can be identified with a subalgebra of (A eg) K)**. We assume that

L eg) K c M(L eg» K) c (A eg> A)" from now on. By [3, 2.5], there is v e

M(L eg) K) such that vv* = p eg) 1 and u*w = <? eg) 1. Let « = v + v*. Then

u = u*, u  = (p + q) eg) 1 and u(p eg> 1 )m = q eg) 1 . Define a path of unitaries in
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[(p + q)® \](A eg) K)**[(p + q) ® 1] by

u(t) = \(\+eitn)(p + q)®\ + \(\-eitn)u:        0<t< 1.

Then define a path of projections in (A ® K)** by

p(t) = u(t)*(p® l)u(t) :       0<t<l.

It is easy to check that p(0) = p ® 1 and p( 1 ) = q ® 1. It remains to show that

p(t) is an open projection for each t € [0,1]. Since p is open, there is a net

of positive elements in A such that ax / p ([2] and [8]). Let fn = J2"=ieu

for each n . It is obvious that u(t)*[ax ® fn]u(t) / p(t) in the «Atopology of

(A ® K)**, where the directed set Ax N has the dictionary order.

It is sufficient to show u(t)*[ax ® fn]u(t) e A® K for each r e [0,1]. By

construction it suffices to show that u[ax®fn], [ax®fn]u, and u[ax®fn]u are

all in A®K. In fact, since ax®fne(p®l)(A®K)(p®l) and v e M(L®K),
we obtain that

u[ax®fn] = v*[ax®fn], [ax®fn]u = [ax®fn]v, and u[ax®fn]u = v*[ax®fn]v

are all in L ® K c A ® K.   D

2. Remarks. (1) In Theorem 1 (a)=>(d), if p and q are in M (A), then the

path of projections between p ® 1 and q ® 1 can be chosen in M (A® K) by

the same proof.

(2) An easy consequence of Theorem 1 (a)<s>(b) is that a central projection

r in A** is open iff r = c(p) for some open projection p in A**.

(3) Note that the assumption p ± q is not needed in proving (d)=>(c), but

for (a)=>(d) this assumption cannot be removed in general. In fact, if p corre-

sponds to a full hereditary C*-subalgebra of A , then by Theroem (2.5) of [3]

her(p) generates A as a closed ideal, but p®\ and 1 eg» 1 cannot be connected

by a path of open projections in (A ® K)**.

2. Corollaries

3. Corollary. If A is a completely a-unital simple C*-algebra,, and her(p),

her(q) are nonessential hereditary C*-subalgebras of A, then p ® 1 and q ® 1

are in the same path component of open projections in (A ® K)** whenever

pq = qp.

Proof. By Theorem 1, we may assume r — pq ^ 0. Since pq = qp = r, r

is the open projection corresponding to her(p) n her(c7) by [1]. Since p and

q are both nonessential, we can choose nonzero open projections px L p and

qx J. q. Then we have py _L r and <?, ± r. Now Theorem 1 applies, p ® 1

is path connected to p{ ® 1, /?, ® 1 is path connected to r ® 1, r ® 1 is path

connected to c/, eg 1 and qx ® 1 is path connected to q ® 1. Here all paths are

in the set of open projections in (A ® K)**. Therefore p ® 1 and q®\ are in

the same path component of open projections in (A ® K)**.   u

In [6], it was proved that all proper projections in M(A ® K) are in the

same path component of projections if A is a cr-unital C*-algebra, where a
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projection P in M(A ® K) is proper iff P ~ 1 ~ 1 - P . With the aid of their

result we prove the following:

4. Corollary. If A is a completely a-unital simple C*-algebra such that every

hereditary C* -subalgebra contains a nonzero projection then p ® 1 and q ® 1

are in the same path component of open projections in (A ® K)** whenever p

and q are nonzero nonessential open projections in A**.

Proof. Since p and q are nonessential open projections in A**, there are

nonzero open projections p0 ± p and qQ 1 q . By hypotheses, there are nonzero

projections px in her(p) and qx in her(c7). By Theorem 1 p eg) 1 and p0 ® 1

can be joined by a path of open projections in (A ® K)** and also q ® 1 and

q0 ® 1 can be joined by a path of open projections in (A ® K)**. Similarly,

p0 ® 1 and px ® 1 are in the same path component of open projections of

(A ® K)**, and so are q0 ® 1 and qx ® 1 . Since A is simple, A ® K is simple.

Thus px®\ and qx®\ are both proper by Theorem (2.5) of [3]. By [6, Lemma

1] p, Cg) 1 and qx ® 1 can be joined by a path of projections in M (A ® K).

Therefore p®\ and q®\ are in the same path component of open projections

in (A ® K)**.   D

5. Question. If A is a completely cr-unital C*-algebra and her(/?) and her((?)

generate the same closed ideal of A, and \\pq\\ < 1, does it follow that p ® 1

and q®\ are in the same path component of open projections in (A ® K)** ?
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