MONOTONE CLOSURES OF COMMUTATIVE C^* -ALGEBRAS

MASAMICHI HAMANA

(Communicated by Paul S. Muhly)

ABSTRACT. We show by an example that an analogue of Pedersen's up-down-up theorem does not hold for monotone complete C^* -algebras.

1. Introduction

Let B be a von Neumann algebra and A a C^* -subalgebra of B which generates B as a von Neumann algebra (or equivalently, is strongly dense in B). For a subset S of a self-adjoint part B_{sa} of B let S^m (resp., S_m) denote the set of elements in B_{sa} which are obtained as the strong limits of monotone increasing (resp., decreasing) nets from S. Kadison showed in [4] that B_{sa} is itself a unique real linear subspace S of B_{sa} such that $A_{sa} \subset S$ and $S^m = S$, and asked the question whether $B_{sa} = (\cdots (((A_{sa})^m)_m)^m \cdots)_m$ (finitely many steps). As an answer to this question, Pedersen proved in [5] that $B_{sa} = (((A_{sa})^m)_m)^m$ (the up-down-up theorem) in general.

A similar question arises when B is a monotone complete C^* -algebra which is generated by its C^* -subalgebra A as a monotone complete C^* -algebra. However we provide in the following an example of commutative B for which $B_{sa} \neq (\cdots (((A_{sa})^m)_m)^m \cdots)_m$ at all finitely many steps. The existence of such a B is an immediate consequence of the result by Gaifman [2] and Hales [3] on complete Boolean algebras (see also [6]).

Here a C^* -algebra B is called *monotone complete* if every bounded increasing net in B_{sa} has a supremum in the partially ordered set B_{sa} , and a C^* -subalgebra A of B is said to generate B as a monotone complete C^* -algebra (or B is the monotone closure of A) if B is the only monotone closed C^* -subalgebra C of B (i.e. $(C_{sa})^m = C_{sa}$) containing A.

Henceforth we consider only commutative C^* -algebras, for which monotone completeness is equivalent to being AW^* , and so a C^* -subalgebra of a commutative AW^* -algebra is monotone closed if and only if it is an AW^* -subalgebra. For basic facts on AW^* -algebras see [1].

Received by the editors September 21, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46L05.

Key words and phrases. The up-down-up theorem, monotone complete C^* -algebra, commutative AW^* -algebra.

2. THE EXAMPLE

Following Solovay [6] we construct a complete Boolean algebra. Such a construction is a simplified version of a result of Gaifman [2] and Hales [3]. Let D be any set equipped with the discrete topology, whose cardinality will be specified below, and let X be the product space D^N with the product topology. Then the complete Boolean algebra, RO(X), consisting of all regular open subsets of X is countably generated, [6]. In terms of commutative AW^* -algebras, this fact is rephrased as follows. If B is the commutative AW^* -algebra whose projection lattice coincides with RO(X) (i.e. the spectrum of B is the Stone representation space of RO(X)), then a separable C^* -subalgebra A of B, which is generated by some countable projections as a C^* -algebra, generates B as a monotone complete C^* -algebra.

Let define cardinalities κ_n $(n=0,1,\ldots)$ successively by $\kappa_0 = \aleph_0$, $\kappa_{n+1} = 2^{\kappa_n}$ $(n=0,1,\ldots)$, and set $\lambda = \sup \kappa_n$.

In the above notation we show the following.

Theorem. If the cardinality of D is more than λ , then we have

$$B_{sa} \neq \left(\dots \left(\left(\left(A_{sa} \right)^m \right)_m \right)^m \dots \right)_m$$

at all finitely many steps.

We begin with the next lemma.

Lemma. Let B be a commutative AW^* -algebra and A a C^* -subalgebra, containing the unit, of B which is generated by its projections A_p as a C^* -algebra. Let $A_1 = C^*((A_{sa})^m)$ denote the C^* -subalgebra of B generated by $(A_{sa})^m$. Then A_1 is generated by projections and we have

$$\operatorname{card}((A_1)_p) \leq 2^{\operatorname{card}(A_p)}$$
,

where card(E) denotes the cardinality of a set E.

Proof. Write b^+ and b^- for the positive and negative part of an element b in B_{sa} , so that $b=b^+-b^-$. If $\{a_i\}$ is an increasing net in A_{sa} with $\sup a_i = x$ in B_{sa} , then $\sup a_i^+ = x^+$ and the support projection of x^+ is the supremum of the support projections of a_i^+ . Indeed, as B is commutative, the net $\{a_i^+\}$ is increasing and $\sup a_i^+ \leq x^+$, and similarly, $\inf a_i^- \geq x^-$. Hence $x = \sup a_i \leq \sup a_i^+ + \sup(-a_i^-) = \sup a_i^+ - \inf a_i^- \leq x^+ - x^- = x$, and $x^+ = \sup a_i^+$. Let E be the set of projections in B which are suprema of some subsets of A_p . Then $E \subset (A_{sa})^m$, and the above argument implies that for every $x \in (A_{sa})^m$ and $\mu \in \mathbb{R}$, the support projection of $(x-\mu)^+$ belongs to E, since $x-\mu \in (A_{sa})^m$ and A is generated by A_p . As x is the norm limit of linear combinations of the support projections of $(x-\mu)^+$, $\mu \in \mathbb{R}$, we have $x \in C^*(E)$, and so $A_1 = C^*((A_{sa})^m) = C^*(E)$. Thus $(A_1)_p$ is the Boolean algebra generated by E, and clearly $\operatorname{card}((A_1)_p) = \operatorname{card}(E) \leq 2^{\operatorname{card}(A_p)}$.

Proof of Theorem. With A and B as in the theorem, define C^* -subalgebras A_n $(n=0,1,\ldots)$ of B inductively by $A_0=A$, $A_{n+1}=C^*(((A_n)_{sa})^m)$ $(n=0,1,\ldots)$. Clearly $\operatorname{card}(A_p)=\aleph_0$, and it follows from the lemma that $\operatorname{card}((A_1)_p)\leq 2^{\aleph_0}=\kappa_1$, ..., $\operatorname{card}((A_{n+1})_p)\leq 2^{\operatorname{card}((A_n)_p)}\leq 2^{\kappa_n}=\kappa_{n+1}$, Moreover $(A_{sa})^m\subset C^*((A_{sa})^m)=A_1$, $((A_{sa})^m)_m=(-(A_{sa})^m)^m\subset C^*(((A_1)_{sa})^m)=A_2$, ... and so on, and the cardinality of the set of projections in $(\ldots(((A_{sa})^m)_m)^m\ldots)_m$ (at n steps) is less than or equal to κ_n . On the other hand, $\operatorname{card}(B_p)=\operatorname{card}(RO(X))\geq\operatorname{card}(D)>\lambda$, and the proof is complete.

Remark. The spectrum of the algebra A in the theorem is homeomorphic to the Cantor set (the totally disconnected, compact metric space without isolated points), as follows from the fact that A is generated by countable projections and has no minimal projections. Indeed, if A has a minimal projection p, then the monotone closure of $A = \mathbb{C}p + (1-p)A$ is $B = \mathbb{C}p + (1-p)B$. This shows that p is also minimal in B, which is clearly impossible. Hence the isomorphism class of A does not depend on the cardinality of D, and the Gaifman-Hales-Solovay theorem stated above tells us that the monotone closure of A can be an arbitrarily large commutative AW^* -algebra when A is embedded in a monotone complete C^* -algebra as a C^* -subalgebra.

REFERENCES

- 1. S. K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1972.
- 2. H. Gaifman, Infinite Boolean polynomials I, Fund. Math. 54 (1964), 229-250.
- A. W. Hales, On the non-existence of free complete Boolean algebras, Fund. Math. 54 (1964), 45-66.
- 4. R. V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. 66 (1957), 304-379.
- 5. G. K. Pedersen, Monotone closures in operator algebras, Amer. J. Math. 94 (1972), 955-962.
- 6. R. M. Solovay, New proof of a theorem of Gaifman and Hales, Bull. Amer. Math. Soc. (N.S.) 72 (1966), 282-284.

Department of Mathematics, Faculty of Education, Toyama University, Toyama 930, Japan