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SIMPLE NEAR-RINGS ASSOCIATED
WITH MEROMORPHIC PRODUCTS

C. J. MAXSON AND K. C. SMITH

(Communicated by Donald S. Passman)

Abstract. Let H be a subgroup of G2 and let

M0(G, 2, H) = {fe M0(G)\f(H) C //}.

In this paper we characterize in terms of properties of H when Mq(G, 2, H)

is a simple near-ring.

I. Introduction

Let G be a group written additively and k a positive integer, k > 2. R. Re-

mak has pointed out in [5] that one can construct subgroups of the direct power

Gr as follows. For j 6 {1,2, ... , k}, let B. be a subgroup of G, B a

normal subgroup of J? such that B-/B- = Bj+X/B.+X with isomorphisms er ,

/ G {1, ...it — 1}. Let a be an ordinal, {bx\n < a) a set of coset rep-

resentatives of Bx  in Bx  where bxo — 0 and define a subset H ç Gr    by

H = Un<al(bii + B~i)xnjZÎ(°j0<Tj-i0--• °*i(*!, + *!))]• Here # iscalleda

k-fold meromorphicproduct and will be denoted by H — Bx/Bx ~CT B2/B2 ~ff

" ' ~<7     RJ^k ■ I* *s straightforward to verify that H is a subgroup of Gr .

However, only for k — 2 can every subgroup of Gr   be obtained as a mero-

morphic product.

Theorem 1.1 (Klein-Fricke) [5]. Every subgroup of Gx G is a 2-fold meromor-

phic product.

Let Af (G) = {/: G —► G} act on Gr   componentwise, i.e. let f(xx ,x2, ... ,

xk) = (f(xx),..., f(xk)). For any subgroup H of Gr   we define Af(G,k,H)

= {/ G M(G)\f(H) C //}.   In a similar manner, let Af0(G) - {/: G -►

G|/(0) = 0}  and define M0(G,k,H) = {/ G M0(G)\f(H) C //}.   These
M(G,k,H) and M0(G,k,H) are subnear-rings of Af(G) with identity id:

G^G, id(x) = x, VxgG.

Received by the editors October 17, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 16A76; Secondary 20E07.

©1989 American Mathematical Society

0002-9939/89 $1.00+ $.25 per page

564



SIMPLE NEAR-RINGS ASSOCIATED WITH MEROMORPHIC PRODUCTS 565

H. Wielandt [6], suggested relating the properties of M(G,k,H) and

Af0(G, k , H) with those of the subgroup H. Because of the above theorem

much more can be said for the case k = 2 and henceforth we restrict ourselves

to this case.

Recall, for any group G, with |G| > 2, Af(G) and Af0(G) are simple near-

rings. (For this and other basic information about near-rings the reader is re-

ferred to the book by Meldrum [3] or the book by Pilz [4].) As one might expect,

the situation for Af (G, 2, H) and Af0(G, 2, //) is much different from that of

Af (G) and AfQ(G). In fact, as we shall see, neither of these near-rings need

be simple. Further when MQ(G,2,H) is simple, it need not be the case that

Af (G, 2, //) is simple.

Example 1.2. Let G = Z2 + Z2, H = G/A ~ff G/B where A = I2 + {0} and

B = {0}+Z2. By calculations, or using Theorem III. 12 we see that Af0(G, 2, //)

is simple. However, if ca: G —► G denotes the constant function ca(x) = a,

Vjc G G then MC(G,2,H) = {c(0 0) ,c{x x)} is an ideal of Af(G,2,H). Thus

M0(G,2,H) is simple but M(G,2,H) is not.

It is the purpose of this paper to characterize in terms of properties of the

subgroup H when Af0(G,2,//) is simple. In the next section we present some

general results which reduce the problem to a special case. In the final section

we focus on this particular case.

II. General results

Let H = Bx/Bx ~CT B2/B2. We first show that in some special situa-

tions, Af0(G, 2, //) and Af (G, 2 , H) are always simple. In fact if Bx n B2 =

G then H = G/G ~ff G/G so H = G x G and M0(G,2,H) = MQ(G)
while Af(G,2,//) = Af(G). Thus M0(G,2,H) is simple and M (G,2, H) is

simple when |G| > 2. If Bx U B2 = {0} then H = {(0,0)} so Af0(G, 2 , H) =

M (G,2, H) = M0(G). Thus we take B~x n B2 ¿ G and 5, U B2 ¿ {0} . We

now give an easy but basic result used throughout the paper.

Lemma ILL Let H = Bx/Bx ~ff B2/B2 and let f G M0(G,2,H). Then

fCBjQjj, ¿=1.2.

Proof. For bx G 5,, (bx ,0) G H. Therefore (f(bx) ,0) G H which implies

f(bx)eBx.

Another useful tool is given next. The proof is omitted since the result is

well known.

Lemma II.2. Let NQ = AfQ(G ,2,//) and let U be a subset of G with the

property f(U) ÇU, Vf G NQ. Define Ann^t/) = {/ G N0\f(U) = {0}}.
Then Ann^ ( U) is an ideal of N0.

Lemma II.3. If BxuB2jiG then M0(G, 2, //) is not simple.
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Proof. Let U = Bx U52 and note that f(U)çU,Vfe M0(G ,2, H) and so by
the above lemma, / = Ann^ (U) is an ideal in Af0(G, 2 , //). Moreover, since

id <£ /, / § Af0(G,2,//).° Further, / ¿ {0} since the function h: G -► G

given by /z(x) = 0 if x G Í7 and A(x) — x if x ^ U isin I.

We have 5, U52 ¿ {0} . Suppose now one of Bx, B2 is {0} , say Bx = {0} ,

so // = {0}/{0} ~ B2/B2. Thus M0(G,2 ,H) = M(G,2 ,H). If Af0(G,2 ,//)

is simple, then from the above lemma, B2 = G, hence // = {0} x G and

M(G,2,H) = M0(G,2,H) = M0(G). Conversely if B2 = G, M0(G,2,H) =

Af0(G) is simple.

Corollary II.4. Lei // = {0}/{0} ~a B2/B2. Then M(G,2 , H) = Af0(G, 2 , //)
awâi Af0(G, 2 , //) is simple ^ B2 — G.

Henceforth we also take Bx ^ {0} ^ B2. In the following result we collect

some necessary conditions for AfQ(G, 2 , //) to be simple.

Proposition II.5. Let H = Bx/B~x *a B2/B~2 and let N0 = M0(G,2,H) be
simple. Then

(i) BxnB2 = {0};

(ii) if Bx¿ G, H = Bx/BxZaG/{0};

(iii) if G is finite, H = G/Bx ~ff G/B2.

Proof, (i) We take U = Bx n B2 and suppose ¡7 / {0}. From Lemma II. 1,

f(U)çU and so / = Ann^ (U) is an ideal, / ^ NQ. Let b be a nonzero

element in U and define h : G —► G by /i(j>c) = 0, xeC/, A(x) = b , x <£ U .

Then A ̂  0 and A G / , a contradiction to the simplicity of iV0 .

(ii) From Lemma II.3, Bx l)B2 = G and since Bx ^ G we must have B2 — G.

Assume 7?2 / {0} and choose 0 # ¿>2 G B2. Define A : G -► G by /z(x) = 0,

x G Bx , and A(x) = b2 if x £ Bx . For (u ,v) e H,

r (o,o),   »es.,

\(0,Z>2),    vtBv

Thus h e N0 and for U = B{ , {0} § Ann^ ([/) § NQ, a contradiction.

(iii) From Lemma II.3, Bx = G or B2 = G, say Bx = G. If B2 ¿ G then

from (ii), H = G/{0} ~CT B2/B2 which is impossible when G is finite. Thus

we must have B2 = G and so H = G/B~x ~CT G/B~2.

Convention. For the remainder of this paper we take G to be a finite group,

written additively with identity 0. We let S* = S\{0} for any subset S of G.

We also let N0 denote Af0(G, 2 , H).

From (iii) of the above proposition we need only consider subgroups H of

the form H = G/A ~g G/B where A n B = {0}. We handle first the case

A = {0}.
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Theorem II.6. Let H = G/A ~CT G/B, A = {0} . Then B = {0} and considering

a as an automorphism of G we have N0 = {/ g M0(G)\fa = af). Moreover,

NQ is simple •**■ all sé -orbits of Gr have the same size where s/ = (a), the

cyclic group of automorphisms of G generated by a.

Proof. Since G is finite, A = {0} implies B - {0} so H = {(a,aa)\a G G}

where we consider a as an automorphism of G. But / G N0 o- (f(a), fo(a)) G

H. However (f(a) ,u) G H o u = of (a), so 7V0 = {/ G M0(G)\fo = af},
the centralizer near-ring W(sf ; G) where stf = (er). The final statement now

follows from Theorem 1.1 of [2].

We conclude this section with a general result about functions in Af (G, 2 , H)

and obtain as a corollary a result to be used in the remaining case.

Lemma II.7. Let H = Bx/B~x ~CT B2/B~2 and let f G Af(G, 2 , //). Then Vw G

5,, /(y.4t7,-) £ /(«) + !, andVveB2, f(v + B2)cf(v) + B2.

Proof. Let <r (« + /?,) = x + 52 and o-(/"(w)-r-7?,) = y + B~2. Since (u,x)eH,

(/(«). /(*)) € // so /(x) G y+ß2. But then for every b €~B~X, (u+b ,x) e H

implies (/(m + c>),./"(;c)) eH, and since /(x) g y + 52, f(u + b) e f(u) + Bx .

Similarly we get f(v + B2) Ç f(v) + B~2.

Corollary II.8. Let H = G/A ~ff G/B with A n B = {0}. If feN0, aeA,

beB, f(a + b) = f(a) + f(b).

Proof. Since A and B are normal subgroups of G with AnB = {0}, a + ¿> =

b + a. From the above lemma, /(¿z + ¿>) = /(a) + ¿>, b G B and /(£ + a) =

f(b) + a~, a G A . Since a + b = b + a , f(a) + b = f(b) +ä~ = ä~ + f(b) and
since AnB = {0},a = f(a), b = f(b).

III. The case H = G/A ~a G/B, A ¿ {0}

We start this section by defining two ascending chains of normal subgroups

of G which play an important role in determining whether or not A^ is simple.

Let A0 = A. Let Ax be the subgroup of G such that Ax/A- a~l((A + B)/B).

Then A{  is a normal subgroup of G and AQ ç A, . Inductively we define .4

to be the subgroup of G such that A ¡/A = o~x((A¡_x + B)/B). These A. are

normal subgroups of G and À, , ¿ A,. Analogously we define B0 - B, Bx

to be the subgroup of G such that a((B + A)/A) = Bx/B and again inductively

Bj to be the subgroup of G such that a((Bj_x + A)¡A) = Bj/B . The B} are

normal subgroups of G with /?._, ç ß . Since G is finite these ascending

chains must eventually become stationary.

Let H = G/A ~ff G/B, A # {0}. Since G is finite, |/1| = |£| and also

3 integer / > 0 such that A¡ = Al+X — ■■■ = ^/+(  for each integer t,t>

0.   From cr~'((/l. + B)/B)=Aj+i/A  and the fact that  |^| = |£|  we obtain



568 C. J. MAXSON AND K. C. SMITH

\Aj+B\ = \Aj+x\ and by symmetry \Bj+A\ = \Bj+x\. Since \A,\ = \A,+l\ = \A¡+

B\ = \A,\ \B\/\A,nB\ we get \A,r\B\ = \B\, so B0 = B ç A,. Suppose BkQA¡.

By definition, a~l(Bk+x/B) = (Bk+A)/A ç AJA = A,+x/A = a~l((A,+B)/B).
Hence Bk+X/B ç (A¡ + B)/B which implies Bk+X C A¡. Thus, if for some m,

Bm = G then for some n , An — G. Since the above argument is symmetric in

A and B we have the following.

Lemma ULI.  3n, An = G^3m, Bm = G.

If there exists an integer n such that An — G then there is a least such integer

n . In this case we say G has A-length n and denote this by n = Al(G). In

a symmetric manner we define the 5-length of G. The previous lemma says

that G has an yl-length *> G has a 5-length.

We show now that the subgroups A¡ and B. are ^-invariant. By Lemma

II.7 A0 — A and BQ = B are JV0-invariant. If ax G A{ then there exists an

a G A0 such that a(ax +A) — a+B, so (ax ,a) G H . If f e N0 then f(ax , a) =

{f(a\)<f(a)) G H an<3 since /(a) G yí0 then /(a,) G Ax . Continuing we have

f(A¡) ç A¡ by induction. Similarly for the B. 's.

Suppose G does not have an yl-length and let / be the least non-negative

integer such that A¡ = A/+x = ■ • • and A¡ ̂  G. Define /: G —► G by f(x) — 0,

x e A¡ and f(x) = x, x £ A¡. We show / g Nq . Let (u,v) G H. If «Ei(

then 3w G /!,_, , b € B such that v = u; + b . But then w G /L_, + B ç A¡

since we showed above yL = yi/+1 implies B ç A¡. Thus (f(u),f(v)) =

(0,0) G // . If u i A, then v <£ A,, hence (/(«), /(v)) = (u,v)eH. Thus

/ G Ann^ (t/) where U = A¡ and {0} § NQ . This establishes the next result.

Lemma III.2. If N0 is simple, 3« such that n = Al(G).

Lemma III.3. Ar\B = Axr\B = --- = A,nB = {0}*>Ar\B = AnBx=--- =

Ar\B, = {0}.

Proof. Suppose Ar\B = Axf\B = ■■■ = A,r\B = {Q} . We show Ar\B. = {0},

0 < j < I. To this end suppose 3x e A n B., x # 0. Then 3x _, ^ 0 in

AxnBj_x such that (*, , ,xß G // . For if x;_, = 0 then Xj e AnB = {0}, a

contradiction. Continuing one obtains xx ¿0 in A ._, f]B. . But then 3x0 ^ 0,

x0 G yl n B, a contradiction. The converse follows in the same manner.

Lemma III.4. Let A n B = Ax n ß = • • ■ = Ak_x n ß = {0} a/i</ ̂  n B ¿ {0}.

T/?e« Mj,  \ < j <k, A.n Bk_j ^ {0} and 3 isomorphisms a. : yi. n 5.   . -♦

^-inßH;-D'

Proof. As in the above lemma, AknB ^ {0} implies A.CVBk_j ̂  {0} 1 < /" <

/c . Now let 0/j(€ yL n Bk_j, j > 1 . Then 3y / 0 in A}_x n Bk_(j_x) such

that (jc , y) G // . For if y = 0, then x e AnBk_ - {0}, a contradiction to the

above lemma. Also y is unique since (x , y), (x , y) G H implies y - y G /?

and since y - y G /í _, we get y = y. Thus we have a function ct : A¡ n

5.    . —► 4¿_| H Bk_u_X) defined by oÁx) — y . Moreover o. is one-one since



SIMPLE NEAR-RINGS ASSOCIATED WITH MEROMORPHIC PRODUCTS 569

(x , y), (x , y) in H implies x -x €An BkJ. Since j > 1 this gives x = x.

Also, er is onto for if y G AjX n Bk_,j_X) then 3x G y4. n 2?fc . such that

(x ,y) G //. But this means er(x) = y. To show cr is an isomorphism let

xx ,x2 G A.r\Bk_.. Then there exist unique y, , y2 G yl_, flfi^,,_,, such that

(x, , y,), (x2, y2) G //. Since //, yl; n 5^_; , and Aj_x n Bk_(j_x) are groups

we have (x, + x2, yx + y2) G H with er(x, + x2) - y, + y2 = Oj(xx) + Oj(x2).

Theorem III.5. If NQ is simple then 3n, n = Al(G) and V/V, 0 < k < n,

Akr\B = {0}.

Proof. From Lemma III.2, 3n , n — Al(G). Suppose 3k < n such that Af)B —

■ ■ ■ = Ak_xf\B = {0} but AknB / {0}. We show there exists a nonzero function

f eN0 such that f(A) = {0}. But then for U = A in Lemma II.2, N0 is not

simple, contrary to hypothesis.

To construct the desired function, we use the above lemma to obtain nonzero

b,. in yi,   ,: n B., 0 < j < k such that
J K     J J

( + ) (b0,bx),ibx,b2),...,(bk_x,bk)eH

Let F denote the (k + l)-tuple (b0,bx, ... ,bk_x ,bk). Since n = Al(G),

3m , m = Bl(G) and since yi^_, n B = {0} implies yi n Bk_x - {0} we have

m > k. Let x G G*. Thus, there is a unique j, 0 < j < m such that

x G Bj\Bj_x where we take B_x = {0} . Let x — b,. Then there exist elements

bj_x G B^x\Bj_2.bj_k G 5;_,\5._(,+1) such that

(++) (*m'W)'^:^h'^€,ä
We make the convention that if any of the subscripts i in (++) are negative

then Bi = {0}. In the (k + l)-tuple, (bj_k , bj_k+x, ... , b.), each element bi

is in ylj. or is not. In this way we get a (k + 1 )-tuples of 0 's and 1 's associated

to (bj_k, ... ,bj), i.e. define ej_¡ by

Jo     iri^i^

We call (£j_k , ... ,e.) the signature of x = ¿r , denoted by £(x). We must

show E(x) is well defined. To this end let (b'j_k ,... ,b'¡) be another (k + 1)-

tuple associated with x = ¿> , that is

(b'j-k - fe;_fc+,).(*;., - ft,) 6 //        where b'^ G Ä^, .

Note that b',\ - b,_x e A0 so b',_x = b,x + a and 6^_-, e Ak o b}_x G yifc .

Then from (¿>'_,, ¿»._. + a), (¿>,_, ,6, ,) G // we get (¿>'_, - 6, ,, a) G H so

b'j_2. bj_2 G yi, , thus b'j_2 G /4¡t'» èy_2 G Ak . In general, b'j_i - bJ_i G 4^, ,

1 < / < k , so ¿>'_( G Ak «* 6 _( G yifc . This shows that /s(x) is well defined.

We define /: G —> G as follows. For x G G, x G B\Bj_l , say x = ¿>7,

define /(x) = £,_^ + ej_{k_X)bk_x + • • • + e;è0 = E(x) ■ F , where E(x) • F
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denotes the scalar product of the (A;-l-l)-tuples E(x) and F . From the previous

paragraph / is well defined.

Claim 1.  f(bj + a0) = f(bj)  Va0eA.

Since a0 G yi , for / = 1 ,2, ... , k3ai G yi^yl^ such that (ak ,ak_x), ... ,

(ax , a0) are in H. Using (++) we obtain

(bj_k + ak , bj_k+x +ak_x),..., (bj_x + ax, b} + aQ) G //.

Since a0,ax , ... ,ak e Ak we have bJ_i + ai g Ak <=>■ bj_i G Ak, i.e. E(bj) =

Eibj + a0). Hence f(b¡ + a0) = f(^).

Claim 2. feNQ.
Every element of H has the form (b._, + a,b¡) for some j where ¿» G

Bj\Bj_x , &,_, G ßy_1\ßJ-2 and a G yi. From Claim 1, /(£._, + a) = Z^.,)

so to show / g N0 it suffices to show (f(bj_x),f(bj)) G //. Let F, =

(bj_k_x , ¿>._fc , ... , bj_x) be a (/c + l)-tuple determined by b _x as in (++).

But then F2 = (bj_k , ... ,&,_, ,6-) is a (k + l)-tuple determined by ¿> so

fibß = Ejbj)-Fx and /(£>,_,) = E^-F,. From (+), (e^.,,«^),

... , (Sj_2bx, £j_2b2), (Sj_xb0 ,Cj_xbx) G // and since b0e B, bk e A we have

(0,F0), (bk,0) € H. Adding gives (£(&_,) • F, /£(£,.) ■ F2) e H. Thus

/6ÍV¿.

Claim 3.  /(A) = {0}.
For a g yi, £(a) = (0.0) so /(a) = 0.

From Claims 2 and 3, / G Ann^ (yi). Moreover B <£ Ak (for if 5 C yl¿

then I4+1| = Mfc + B\ = \Ak\ and since Ak G y^+1 then_ yl¿ = ^+1 = y^+2 =

• • • , contradicting n = Al(G) ) so for b G -#\yí¿ , f(b) = b0 / 0 hence we have

the desired function.

In a sequence of lemmas we establish the converse. For convenience we say

H = G/A ~ff G/B has property I if 3«, n = Al(G) and VA:, 0 < k < n,

AnBk = {0}.

Lemma III.6. Let H satisfy property Z. Then for each i, 0 < i < n, \A¡\ =

\B¡\ = \A\i+l. Therefore \G\ = \A\n+l and Bl(G) = n.

Proof We know \Aj\ = \Aj_x +B\ for all ;', I <j <n. Since Aj_xnB = {0} ,

\Aj\ = \Aj_x\\B\. From \AX\ = \A\\B\ = \A\2 we get \A}\ = \A\j+l, henee

|G| = \An\ = \A\"+l . From Lemma II.3, B n Ak = {0} VA:, 0 < k < n so

in a symmetric manner we get \Bn\ = \A\n+ , hence Bn = G. But this means

5/(G) = «.

Let y/: NQ —> M0(A) be the restriction map, y/(f) = f/A . It is clear that

y/ is a near ring homomorphism. When // satisfies property X we show y/

is an isomorphism. Since Af0(yl) is simple we will have the converse of Theo-

rem III. 5. We first show y/ is one to one.
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Lemma III.7. Let H satisfy property X.

(i) V/, 0 <j<n, AjnBn_j_x={0}.

(ii) (AxnBn_x) + (A2r\Bn_2) +■■■ + (An_xr\Bx) is a direct sum.

(nï)An_xnBn_x=Z'!:ll®(AinBn_i).

(iv) G = A@B@(An_xr\Bn_x).

Proof, (i) Let x G yi7 ni?    ._, .   Then 3a,_, , ... , a0 such that (x,aj_1),

(a,_i >a,-2)' ••• - (ûi -ao) € ^ where a( g yi, n BniX .  Thus a0 = 0 and

from this ax = a2 = ■■ ■ = a,_x - x = 0.

(ii) It suffices to show (AxnBn_x) + --- + (A¡_xnBn_{¡_X))n(AinBn_¡) = {0},

for all i, 2 < i < n - 1. But this is immediate since x G (Ax n /?„_,) H-h

Mf_i n £„_(,_„) n (yi;. n Bn_¡) implies x G yL_, n Bn_¡ = {0} by part (i).

(iii) Consider A¡ n5n_, for any /', 1 < / < n - 1. From part (i) A¡_, H (A¡ n

£„_,) = {0} so Ai_l@(Air\Bn_¡) is a subgroup of Af with order |^|'|^;n5n_/|.

By Lemma III.4, |^4/n JBn_/.| = \A\ and therefore \Ai_x@Ai^Bn_i\^\A\i\A\^

\A\'+i. This in turn implies | J2"Ii ©K- n5„_,.)| = Ml""1 . On the other hand,

from \A\n+x = \G\>\An_x+Bn_x\ = \A\2n /\An_xnBn_x\ we get \An_xnBn_x\>

Ml"-1 and since An(An_xn Bn_x) = {0} , |yi 8 (An_x nß„_,)| = M| M„_, n

Bn_x\ < M|" or \An_xnBn_x\ = Ml""1. Since E-J,' e(yi,n5„_,.) Ç ¿B_inÄ„-i
the result follows.

(iv) It is clear that A@Br\(An_xnBn_i) = {0} . Hence yle5e(yl„_,ri5M_,) is

a subgroup of G of order MIMIMI""1 = M|"+1 , i.e. G = A®B®An_xnBn_x .

Corollary III.8. Let H satisfy property X and let w eG. Then w = a + b + c,

a € A, b G B, cG An_x n Bn_x and V/* G NQ, f(w) = f(a + b + c) =

à + b + f(c), âeA, beB.

Proof. From part (iv) of the above lemma, w — a + b + c , a e A, beB,

c eAn_xr\Bn_x . From Lemma II.7, f (a + b + c) = f(b + c + a) = f(b + c) + â,

âeA and f(b + c) = f(c + b) = /(c) + b , beB.

Lemma III.9. Let H satisfy property X and let f e Ann^ (yi).

(i) f(Aj)CAj_x   V.,  \<j<n.

(ii) f(B) = {0}.
(iii) f(Bj)CBj_x, V,,  l<j<n.

(iv) fiA®B) = {0}.

(v) f(G)CAn_xnBn_x.

Proof, (i) Let a, e Ax . Thus 3a0 e A such that (ax ,a0) e H. But then

(f(ax), /(a0)) = (f(ax), 0) G H implies /(a,) G ̂  = yi0 . Continuing, let aj e

A. and suppose f(Aj_x) ç Aj_2. Then for some a;_x e A}_x , (a.,a _,) G //

so (/(a.) ./(a,._,)) G H. Since /(a,.,) G é¡_2 , /(a,) G A~fJ, .

(ii) From part (i), f(G) = f(An) c An_x and so f(B) QAn_x. But from

Lemma II. 1, f(B) ÇB so we have f(B) ç An_x n B = {0}.
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(iii) Follows from (ii) using the same arguments as in (i).

(iv) Follows from (ii) and Corollary II.8.

(v) From (i) and (iii), f(G) = f(An) C An_x and f(G) = f(Bn) ç Bn_x .

Lemma III.10. If f e N0 and f(A) = {0} then f(G) = {0}.

Proof. Let f e N0 such that / G Ker y/, i.e. f(A) = {0} . For x e G, from

Corollary III.8, x = a + b + c , a e A, beB, ce An_x n Bn_x and f(x) =

à+b+f(c), a G yi, beB. From the above lemma, f(x) e An_xnBn_x . Thus

if f(c) = 0 then f(x) e (An_x C\Bn_x)r\A®B = {0} from Lemma III.7, (iv).

Therefore f(A) — {0} implies / is the zero map which means Ker y/ = {0} .

To complete the proof we show f(An_x n #„_,) = {0} .

Let w e An_x n Bn_x, w = xx + x2 + ■■■ + xn_x where x\ G yi( n Bn_i,

i = 1 ,2,...,«- 1 . If w = 0 we are finished so we take w ^ 0. Let /

be the largest integer such that x¡ ^ 0. If / = 1, w = x, and f(w) e

f(AxnBn_x) CAnBn_2 = {0}. If / = 2, w = xx+x2. Since x, eAxC\Bn_x ,
3a0 e A r\ Bn such that (x, , a0) G H. Also, since x2 G A2 n /?n_2, 3a, G

^i n^„-i witn (x2,ai) e ^- Therefore (x, + x2 ,a0 + a,) G H and thus

(/(•*i + x2) - f(ao + a\)) £ H. However, from Lemma II.7, f(a0 + a,) = a0 +

f(ax) ,â0e A and by the previous case /(a,) = 0. Now (f(xx + x2) ,â0)eH

implies f(xx + x2) e Ax . But x, ,x2 G Bn , imply f(xx + x2) e Bn_2. Thus

/(x, + x2) G yi, n Bn 2 — {0} from Lemma III.7, (i). Assume the results

for all elements of the form xx + ■ ■■ + x¡_x and let u = y, + • • • + y¡. As

above, 3a ¡ e Ai n Bni with (y/+1 ,a¡) e H, 0 < i < I - 1  and we obtain

(/(") ■ f(a0 + ' ' • + fl/_i)) = (/(«) - â0 + /(ai + " ' + a/-i)) = (/(") - âo) by th«

induction hypothesis. Hence f(u) e Ax and « G 5n_,  implies /(«) G Bn_2,

so we have /(«) = 0. The result follows by induction.

We now have that y/: N0 —> AfQ(yl) defined by y/(f) = f/A is a monomor-

phism when H satisfies property X. It remains to show that every function /

on yi with f(0) = 0 can be extended to a function in N0.

From Lemma III.4 we have isomorphisms er ,

B = AnnB0^An_xnBxa^---^AjnBn„j^Aj_xnBn_u_X)^--.^

AlnB„_l^A0nBl,^A,

Let f0 e M A A). We extend f0 to a function f e NQ. First let f = f0

on A = AQn Bn . We extend to yi, n Bn_x . Let x e Ax n BnX . From the

definition of er, , (x ,cr,(x)) G // and er, (x) G yi0 . But then /er, (x) G A . We

define /(x) to be the unique element in yi, C\Bn_x such that er,/(x) = fox(x).

Assume now we have defined / on A¡_{ n Bn_,._X) and let x € An Bn_j.

Then (x,<j.(x)) eH .a^x) e Aj_x aBR_u_{) and /ct/x) g ^.^ß,^,,.

Define f(x) to be the unique element in A.ç\Bn_. suchthat a.f(x) = /cr(x).
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Therefore V/, 0 < j < n we have / defined on A,r\BH_} and faÂx) = a./(x)

Vx G Aj n Bn_j. Recall from Lemma III.7 (iv), G = (yi n Bn) ® (Ax n Bn_x) ©

• © (^„-i nß,)e(/inn5). We extend / linearly to G, i.e. for x G G,

x = £■=()*/ where x,. G yi, n/?„_,. define /(x) = E^oW •

We next show that f e NQ. Let (u,v) e H, u = E"=oM< > "/ € A¡ n5n-/

and W = E"=0 w, > fy e ^, n 5«-/ • For ' = 1 .2, ... , « , (w(, a^M,-)) G # and
since (u0 ,0) G //, we have (w.a^w,)-!--h an(«n)) G //. From (u,v) e H

and (0,un) g// we get («,w0 + u, H-HVn_j) G //. Thus (0,a,(M,) - v0 +

o2(u2)-vx+- ■ - + an(un)-vn_x) is in H so a,(M,)-u0 + - • - + on(un)-vn_x eB.

But also o-,(w1)-w0+---r-aw(wn)-v„_, eAQ+---+An_x =An_x, hence a,(w,)-

w0H-r-an(«n)-un_, =0 which in turn gives v = ox(ux)-\-^-on(un) + vn .

Therefore f(v) = fox(ux)+---+fon(un)+f(vn) = axf(ux)+---+oJ(un)+f(vn)

and f(u) = E"=o /(",■)■ But> (/("o)-°) e #• (/("/) ■ ",•/("/)) « // for
l = 1,2, ... ,« and (0,/(w„)) G // together imply that (/(«),/(*>)) G //,

consequently f e NQ. Combining this with the previous lemma gives the

following.

Theorem III.ll. If 3n, ne Al (G) and VA; < n Af)Bk = {0} then N0 is

simple.

Combining Theorems III. 11 and III.5 we have our major result.

Theorem 111.12. Let H = G/A  *a G/B,   A ¿ {0} / B,   A n B = {0}.
Af0(G, 2 , H) is simple <*3n,n = Al(G) and VA:, 0 < k < n, AnBk = {0}.

We conclude this section and the paper by showing that for the near-ring

MQ(G ,2 ,H) the concepts of simplicity and 2-semisimplicity coincide. This is

identical with the situation for centralizer near-rings W(s/ ; G) when sé is a

cyclic group of automorphisms.

Theorem 111.13. Let H = G/A ~CT G/B, A n B = {0}, N0 is simple o N0 is

2-semisimple.

Proof. If yi = {0} then as in Theorem II.6, NQ is the centralizer near-ring

W(sé ; G) where SÍ = (a). Consequently this case follows from [2].

Now take yi ^ {0} and suppose JV0 is not simple. If V«, An ¿ G we

let / be the least index such that yi, = A/+x . Let / = {/ G N0\f(A¡) = {0}

and f(G\A¡) ç A¡). Then / is a nilpotent YV0-subgroup. Suppose 3a, G A¡,

a, -fí 0 such that (a,^^ e H. Define /: G -► G by f(x) = 0 if x G yi,

and f(x) = a, if x £ A¡. Since yi, = yi/+1 = ■•■ , B c A¡, consequently,

for (x,y)eH,xe A,o y eA¡. If x $ A, ,(f(x) ,/(y)) = (a,,a/) e H

while if x G yi/((/(x),/(y)) = (0,0) G H. Thus fei and / # {0}. It

remains to show that such an a¡ exists. Since / is least with yi, = Al+X = • • • ,

3b e B, b ^ 0, be A/\Al_x . Further, since b e A¡, a(b + A) = a¡_x+ B,
fl/_ | 6 A,_, . But then o(a¡_ x+ A) = a¡_2 + B, a¡_2 G A¡_2 and continuing we

obtain a(a/_, + yi) = a,_3-l-/?.a(ax +A) - a0 + B , o(a0 + A) = a (A) — B.

Adding gives a(c»+a/_,-l-a/_2-l-ha, +A) = a,_x+a¡_2-\-\-aQ + B . Now let
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a, = b + a,_, + a,_2 + • • • + a, + a0.  Then a, g (b + a,_, +-h a, + yi) n

(a,_, + ••• + a0 + 5)  so  (al,a/) e H and a, ^ 0 since ¿>   £  yl,_,   while

ö/_i+Ä/-2 + ,-' + flo€4/-i>
If 3«, n — Al(G) and N0 is not simple, then as in the proof of Theo-

rem III.5 we get that Ann^ (yi) is a nonzero AT»-subgroup of N0. We note that

if / G AnnNo(N) then f(A{) ç A0, f(A2) ç yi, , ... , and /(G) = f(An) ç
An_x . From this we have the product of any n elements in Ann^ (yl) is 0, so

Ann^ (yi) is nilpotent and again N0 is not 2-semisimple.
>0'
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