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CHARACTERIZING WHEN R[X] IS INTEGRALLY CLOSED

THOMAS G. LUCAS *

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Unlike the situation when dealing with integral domains, it is not

always the case that the polynomial ring R[X] is integrally closed when R is

an integrally closed commutative ring with nonzero zero divisors. In the main

theorem it is shown that for an integrally closed reduced ring R , R[X] is not

integrally closed if and only if there exists a finitely generated dense ideal J and

an /î-module homomorphism 5 6 Hom/¡(7, R) suchthat í is integral over R

and 5 is not defined by multiplication by a fixed element of R . As a corollary

it is shown that R[X] is integrally closed if and only if R is integrally closed

in T(R[X]), the total quotient ring of R[X].

Introduction

In what follows all of the rings are assumed to be commutative with nonzero

identity. When we say that a ring R is integrally closed we mean that R is

integrally closed in T(R), the total quotient ring of R . An element of R which

is not a zero divisor is said to be regular and an ideal / of R is said to be dense

if rl = (0) implies r — 0. If the only finitely generated dense ideals are those

which contain regular elements, R is said to have property A . Finally, the set

of minimal prime ideals of R is denoted by Min R .

An exercise in Gilmer's book [G, Exercise 11, p. 100] essentially asks the

reader to determine necessary and sufficient conditions in order that the poly-

nomial ring R[X] be integrally closed. The solution is not that R is integrally

closed for unlike the situation when dealing with an integral domain, it is not

the case that R[X] is integrally closed when R is integrally closed. Of course if

R contains a nonzero nilpotent element k , then R[X] is not integrally closed

since k/X is not a polynomial but is integral over R[X]. But even if R is an

integrally closed reduced ring, R[X] need not be integrally closed. We present
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one such ring in our Example 3 and others can be found in various places

including [BCM, Example 1], [ A, , p. 69], and [Lu2, Example 1.4].

Various authors have produced sufficient conditions for R[X] to be integrally

closed. In the mid-1970s, Gilmer proved, but did not publish, the following: If

R is an integrally closed ring such that RM is an integrally closed domain for

every maximal ideal M, then R[X] is integrally closed. Later, in a 1980 paper

[ A, ], Akiba gave an independent proof of the above result and used it to prove

his Theorem 2.1: Let R be an integrally closed reduced ring for which Min/?

is compact (in the Zariski topology). Then R[X] is integrally closed if and only

if T(R) is von Neumann regular. In Proposition 9 of [Q], Quentel proved that

for a reduced ring R , T(R) is von Neumann regular if and only if Min R is

compact and R has property A . With this we can restate Akiba's result as: Let

R be an integrally closed reduced ring for which Mini? is compact. Then R[X]

is integrally closed if and only if R has property A . Without the assumption

that Min R is compact, Akiba proved R having property A is sufficient for

R[X] to be integrally closed when i? is reduced and integrally closed. Using

this result together with two others of Akiba's, namely [ A, , Corollary 1.2] and

[A2, Lemma 1.1], it is possible to prove the following: If R is an integrally

closed reduced ring for which RM has property A and is integrally closed for

each maximal ideal M, then R[X] is integrally closed. A proof of the above

result can be found in [H, p. 103]. Whether this result says anything new is

not known. But the ring in our Example 2 shows that R need not be locally

integrally closed in order for R[X] to be integrally closed. This same ring, as

well the ring in [A, , Example], shows that R need not have property A in

order for R[X] to be integrally closed.

The most recently discovered sufficient condition of which we are aware in-

volves rings which are strongly Prüfer. A ring R is said to be strongly Prüfer

if every finitely generated dense ideal is locally principal. In [D], Dixon proved

the following: If R is an integrally closed reduced ring and T(R) is strongly

Prüfer, then R[X] is integrally closed. A proof of this result can also be found

in [H, p. 118] as well as an example to show that T(R) need not be strongly

Prüfer in order for R[X] to be integrally closed [H, Example 18]. The ring

of Example 17 in [H] shows that a strongly Prüfer reduced ring need not have

property A.

The question now is what do these various sufficient conditions have in com-

mon. The answer (in some sense) lies in considering the examples mentioned

above where R is an integrally closed reduced ring and R[X] is not integrally

closed. In each case there is a quotient of polynomials f/g e T(R[X])\R[X]

such that not only is f/g integral over R[X] but integral over R as well.

Moreover, if f. and g denote the j th coefficient of / and g, respectively,

then (f/g)g = f so that f/g defines an i?-module homomorphism from

the ideal c(g) = (g0 ,gx , ■■■ ,gn) of R to R. As part of our main theo-

rem (Theorem 4) we show that existence of such a quotient is both necessary
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and sufficient for R[X] to fail to be integrally closed. Hence, we have that

R[X] is integrally closed if and only if R is integrally closed in T(R[X])

(Corollary 5).

Any undefined notation or terminology is standard as in [AM] or [G]. Also

the results due to Akiba, Dixon, Gilmer, and Quentel can all be found in [H].

When R[X] is integrally closed

As noted earlier, if R contains a nonzero nilpotent element, then R[X] is

never integrally closed. Hence, except for Corollary 5, all of our results are

stated for reduced rings.

To motivate our characterization of when R[X] is integrally closed we start

with two examples. The rings presented in these two examples are so-called

A + B rings. Before presenting our examples, we describe the basic method of

construction of A + B rings and list some of their properties in Lemma 1.

Let D be a domain and let & be a set of prime ideals of D such that

C\p e3¡¡ Pn — (0) and Up ey> Pa equals the set of nonunits of D. Let I = sfxN,

where sf is an index set for £P and N is the set of natural numbers. For each

i = (a ,n) e I, let D¡ = D/Pa and K¡ = qf(D¡). Let A be the canonical

image of D in n,e/ D¡ and let R = A + B where B = J2i€i K¡ ■

Lemma 1. Let R = A + B be a ring formed in the above manner. Then

(a) For each r e R, r can be written uniquely as r = a + b where a e A

and b e B.

(b) For r e R, r is a zero divisor if and only if for some i e I, the i th

component (r)¡ of r equals zero.

(c) If r e R is not a zero divisor, it is a unit. Hence, R = T(R).

(d) A is canonically isomorphic to D.

(e) R has property A if and only if for every finitely generated proper ideal

J of D, J cP  for some P eS?.
(f) If C\Dp = D, then R[X] is integrally closed.

Proof. As we need the lemma only for our examples we will only sketch the

proofs. For a more detailed account of A + B rings see [H, §26], [Lu , ] and

[Lu2].

The proofs of (a)-(d) are straightforward, that of (c) following from the fact

that B is a direct sum of fields and the assumption that LiPa contains all of the

nonunits of D. The proof of (d) follows from the assumption that r)Pn = (0).

The proof of (e) follows from showing that for an ideal H of R, H has a

nonzero annihilator if and only if for some i e I, (r)¡ = 0 for all r e H.

The proof of (f) is more involved than the others and a more detailed proof

can be found in [Lu 2 ]. Essentially the proof has two parts. The first is to

show that if / e T(R[X]) is integral over R[X], then / can be written as

/ = f/g+k , where k e B[X] and /, g e D[X] with f/g integral over D[X].

Hence, using the proof of (e), we have that the content of g (as a polynomial
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over D ) is not contained in any Pa since g is not a zero divisor of R[X].

Thus g has unit content as a polynomial over Dp . As f/g is integral over

D[X], it is also integral over Dp [X]. By the content formula we get that f/g

reduces to a polynomial over Dp . Whence, if nDp — D, f/g e D[X] and

R[X] is integrally closed.

Example 2. Let K be a field and let D = K[Z2 ,Z3 ,Y]M with M =

(Z ,Z , Y). Let ¿P be the set of height one primes of D and form the

corresponding A + B ring R. Viewing MD as an ideal of A, we see that

N = MD + B is a maximal ideal of R and that RN is isomorphic to D.

Hence i? is not locally an integrally closed domain. Moreover, R does not

have property A since MD is not contained in any height one prime of D.

It is elementary to show that (D: MD) = D so that MD is not a maximal

prime of a principal ideal. Thus by [K, Theorem 53], D = nDp and R[X] is

integrally closed.

We use a similar domain in our next example but add ZY to the definition
2 ^

of D so that now the maximal ideal MD = (Z ,Z ,ZY , Y)D is divisorial,

that is (D: (D: MD)) = MD.

Example 3. Let K be a field and let D = A:[Z2,Z3,ZF, Y]M with M =
2 3

(Z ,Z , Zy ,Y). As before let .¡F be the set of height one primes of D

and form the corresponding A + B ring R. We shall show that R[X] is not

integrally closed.

2 ^
For ease of notation we begin by setting f0 = ZY, fx=ZY, f2 = Z ,

f3 = Z , and g0 = Y, gx = ZY, g2 = Z , and g3 = Z . Define polynomials

f,ge R[X] by f(X) = f,X3 + f2X2 + fxX + f0 and g(X) = g3X3 + g2X2 +
gxX + g0. Then g is not a zero divisor of R[X] since the content of g in D

is ¥D. As Z <£ D, f/g <£ R. But (f/g)2 = Z2 so that //£ is integral
over R. Hence, R[X] is not integrally closed.   D

Remark. Observe that for the polynomials / and g of Example 3, not only is

f/g integral over R but (f/g)gt — f\ for each i. Hence, multiplication by

f/g defines an 7?-module homomorphism from the dense ideal (g0 ,gx,g2, g3)

to R and this homomorphism is integral over R. In Theorem 4 we show that

such a situation arises whenever R[X] is not integrally closed.

Before presenting the theorem we recall a few facts from Lambek's book

concerning Q(R), the complete ring of quotients of R [La, pp. 36-46].

We begin with the definition.

Let Jx and J2 be dense ideals of R and let f¡ e HomR(J¡ ,R) for / = 1 ,2 .

As Jx n J2 is also dense, we may define fx + f2 as an i?-module homomor-

phism from Jx n J2 to R. To define the product /, f2 note that fxf2 e

HomÄ(/2~ Jx ,R). To make Q(R) into a commutative ring, define an equiv-

alence relation  8  on the homomorphisms above by /,6/2   if and only if
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f\(u) — f2(u) f°r eacn u e JXC\J2. With this definition it turns out that not

only is Q(R) a commutative ring but it is also von Neumann regular provided

i? is reduced.

For a/b e T(R), we may define a homomorphism / e HomR(bR ,R) by

f(br) = ar. Hence, we have that both R and T(R) embed naturally in Q(R).

Moreover, T(R[X]) embeds in T(Q(R)[X]) since any finitely generated ideal /

of R has a nonzero annihilator in R if and only if / has a nonzero annihilator

in Q(R).

If R is reduced, then Q(R)[X] is integrally closed since Q(R) is von Neu-

mann regular (see for example [GP, p. 224]). Hence, if we let S be the integral

closure of R in Q(R), we have that S[X] is the integral closure of R[X] in

T(Q(R)[X]).

Theorem 4. Let R be an integrally closed reduced ring and let S be the integral

closure of R in Q(R) - Q. Then the following are equivalent.

( 1 )   R[X] is not integrally closed.

(2) There exists an element s e S\R such that s = f/g e T(R[X]).

(3) There exists an element f/g e T(R[X])\R[X] which is integral over R

(4) There exists a finitely generated dense ideal J of R and an R-module

homomorphism s from J to R such that s e S\R.

Proof. Obviously, (3) implies (1). The equivalence of (2) and (3) follows from

the remarks preceding the theorem.

To see that (4) implies (1), (2), and (3), let J = (aQ, ... ,an) be a dense

ideal of R and let s e KomR(J ,R)\R be integral over R.

For each j = 0,1,... ,n let b> = s(a.) = ja; and set f(X) = bnXnH-\-bQ

and g(X) = anX" + ■ ■ ■ + a0 . Then as an element of T(Q[X]), f/g = s. As

s is not a polynomial over R, f/g e T(R[X])\R[X] and f/g is not only

integral over R[X] but over R as well.

It remains to show that (1) implies (4). To this end assume that R[X] is not

integrally closed and let f/g e T(R[X])\R[X] be integral over R[X]. Viewed

as an element of T(Q[X]) we may write f/g as f/g = s(X) = skX H-\-s0 e

S[X] with some s¡ e S\R. Since s(X) is a polynomial we may pick / and g

so that the degree of s(X) is minimal. Our intent is to show that k — 0 and

in the process that f/g = s0 defines an .R-module homomorphism from the

content of g into R.

Claim 1.  sk ,s0 eS\R.

If sk e R, then f/g - skXk = sk_xXk~l +-h s0 is both an element of

T(R[X]) and integral over R[X]. Likewise, if s0 e R, then (f/g - s0)X~l =

skX ~[ -\-hi, is both an element of T(R[X]) and integral over R[X]. As

the degree of s(X) was assumed to be minimal neither sk nor sQ can be in R.
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Write g(X) = gmX   +-h g0 . We will show that skgj e R for each j.

With this we may conclude that k = 0 as otherwise we would have

f _ gs^X   =s^xk-i + ^+s^e T,R[X])\R[n

Claim 2. For each i and j ,s¡gj e R.

Obviously, skgm e R. Hence, by multiplying both sides of f/g = s(X) by

gm and rearranging we get that gmf/g-gmskXk = gmsk_xXk~l+- ■ +gms0. As

the degree of s(X) was minimal, gms¡ e R for each i. Proceeding inductively

we get first that gm_xsk € R as both gmsk_x and gmsk_x + gm_-[sk are in

R. Hence, as above gm_{s¡ e R for each i. Continuing this process we get

s¡gj e R for each i and j. In particular, skgj e R for each j.

As noted above, with skgj e R for each j we have that k = 0 and so f/g -

s0e S. Moreover, (f/g)gj - f for each j since / = s0g. As the content of

g is a finitely generated dense ideal of R, we have that multiplication by f/g

defines an Ä-module homomorphism from the content of g to R.     D

Our first two corollaries restate the above result in the positive.

Corollary 5. Let R be a ring. Then R[X] is integrally closed if and only if R

is integrally closed in T(R[X]).

Proof. For R an integrally closed reduced ring, the statement is essentially the

contrapositive of Theorem 4. In the event that R is either not reduced or

not integrally closed, the statement holds since neither R nor R[X] can be

integrally closed in T(R[X]).     G

Corollary 6. Let R be a reduced ring. Then R[X] is integrally closed if and

only if for every finitely generated dense ideal J of R, (R: QJ) OS - R.

We conclude by giving a new and much condensed proof of Akiba's Theorem

3.2 in [A , ].

Corollary 7. Let R be an integrally closed reduced ring with property A . Then

R[X] is integrally closed.

Proof. It is routine to verify that R has property A if and only if T(R) has

property A . Hence, as R[X] is integrally closed in T(R)[X] we may assume

that R = T(R).

In a total quotient ring with property A the only finitely generated dense ideal

is the ring itself. Hence, R[X] is integrally closed since HomR(i? ,R) - R.     D
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