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A THEOREM ON FUNCTION SPACES
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(Communicated by Dennis K. Burke)

Abstract. Let X and Y be normal and first countable spaces, such that

Cp(X) and CP(Y) are linearly homeomorphic. Suppose A''"' is countably

compact for some r» < w, . We prove that if a = 1 then y('*> is also count-

ably compact. The first countability condition in this result is essential. We also

present examples that if a is not a prime component, then y("' need not to

be countably compact.

0. Introduction

Let X and Y be Tychonov spaces. By C(X) we denote the set of all

realvalued continuous functions on X.  We endow C(X) with a topological
y

vectorspace-structure by considering it to be a subspace of R . With this topo-

logy we denote C(X) by Cp(X).

In [1] Arhangelskii proved that if C (X) is linearly homeomorphic to C (Y),

and X is compact, then Y is compact. In addition, if X is pseudocompact

then Y is pseudocompact. This means in particular that if X and Y are

normal then X is countably compact if and only if Y is countably compact.

In this note we prove that if X and Y are both normal and first countable

such that C (X) is linearly homeomorphic to CAY), then X     is countably

compact if and only if y(1) is countably compact (X( is the set of accumula-

tion points of X). Our technique is inspired by Arhangelskii [1] and Baars, de

Groot, van Mill and Pelant [3]. We give two examples showing that our result

is "best possible". There exist a first countable normal space X and a normal

space Y suchthat C (X) and CAY) are linearly homeomorphic but X(1) is

not countably compact and Y( ' ' is countably compact. In addition, there exist

two metric spaces X and Y suchthat C (X) and C (Y) are linearly home-

omorphic but X{2) is compact while Y(2) is not compact (X{2) is the second

derivative of X).
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1. Preliminaries

In this section we give some results from Baars and de Groot [2], and results

and definitions from Arhangelskii [1], which we use in section 2.

Let X be a toplogical space and A a subset of X. Let Y = Yx A be the

quotientspace obtained from X by identifying A to one point, say oo. Let

C A(X) be the subspace of C (X) consisting of those functions which vanish

on A , and let C 0(Y) be the subspace of CAY) consisting of those functions

which are zero at oo.

If two linear spaces X and Y are linearly homeomorphic then we denote

that by X ~ Y .

1.1 Lemma [2]. Let X be a space and A a subset of X.  Then C A(X) ~

Cp,o(Y).

For a topological space X we define for every ordinal a the a-th derivative

X{"] by transfinite induction as follows: (see [5])

(a) X{0) = X and X{1) = {x G X\x is an accumulation point of X}.

(b) If a is a successor, say a = ß + 1 , then X{n) = (Xß]f].

(c) If a is a limit ordinal then X{a) = f\ß<n X{ß).

An ordinal a is a prime component whenever for all ordinals ß and ô with

a - ß + Ô we have ô — 0 or Ô = a. For every ordinal a denote by a the

largest prime component which is less than or equal to a.

By C 0([1 >Q]) we mean the subspace of Cp([\ ,a]) consisting of those

functions which are zero at a.

The next lemma and theorem can be found in [2].

1.2 Lemma. Let a be an ordinal. Then C 0([1 , a]) ~ C' ([I ,a]).

1.3 Theorem. Let co <: a,  ß < œ{.   Then Cp([\ ,a]) ~ Cp([l , /?])  iff a ^
o   ^      w
ß < a   .

The following definitions can be found in [1], Let X and Y be Tychonov

spaces, and <f>: C(X) —» C(Y) a linear mapping. For every y G Y, the sup-

port of y in I is defined to be the set supp(y) of all x G X satisfying the

condition that for every neighborhood U of x, there is an / G C(X) such

that f(X\U) = {0} and <j>(f)(y) ¿ 0. For a subset ^ of F, we denote

(J € 4 suppfj") by supp A . Furthermore <f> is said to be effective if for every

f, g G C(X) and y G Y, such that / and # coincide on a neighborhood of

supp(y), 4>(f)(y) - <f>(g)(y).
A subset A of X is said to be bounded if for every / e C(X), f(A) is

bounded in R.

1.4 Proposition. ([1] Arhangelskii).   Let X and Y be Tychonov spaces and

cfi: C (X) —► C (Y) a linear homeomorphism. Then

(a) (j> is effective,
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(b) if A is a bounded subset of Y, then supp A is bounded in X.

For details about ordinals we refer to [5] and [6].

2. Function spaces

In this section we prove the results, announced in the Introduction.

2.1 Lemma. Let X and Y be Tychonov spaces and (j>: C (X) —► Cp(Y) a

homeomorphism.  Suppose that (/„)n€N is a sequence in C' (X) such that fn

converges pointwise to a discontinuous function f G R . Suppose g : Y —► R is

an accumulation point of the set {</>(/„) | « € N} . Then g is not continuous.

Proof. Since {/J « e N} is closed and discrete in C (X) we have {4>(fn) \

« G N} is closed and discrete in Cp(Y).   a

2.2 Theorem. Let X and Y be topological spaces which are both normal and

first countable and let Cp(X) and Cp(Y) be linearly homeomorphic. Then X(1)

is countably compact if and only if Y     is countably compact.

Proof. Suppose X is not countably compact and Y is countably compact.

Since X(1) is not sequentially compact, there exists a closed discrete set F =

{xn | « G N} in X( . For every n GN let {U" \ j G N} be a decreasing open

base at xn and f" a Urysohn function such that f"(xn) = 1 and f"(X\U") =

0. Then f" —»• x r   pointwise, where y     is the characteristic function of x„.
J Xn Xn n

Notice that  y     is discontinuous.   Furthermore let 4>: CAX) —► CAY) be a
■*« P P

linear homeomorphism and let g" = 4>(f").

Claim. For every y G Y and « G N, the set {g" (y) | j G N} is bounded in R .

Suppose not. Then there are y e T and « € N, such that without loss of

generality for every k G N there is L G N, with #" (y) > 2  . The function

/ = Et. 2~kfjk € CP(X) > so 4>(f) = ¿Zti 2'ks]k 6 Cp(Y). But then we have

a contradiction since (j>(f)(y) = J2T=i 2~ Sjty) = °° •

For every y g Y, let A   be compact in R such that {#"(y) | j G N} c A  .
Y n

Then rLey^y is a compact subset of IR . Since {# | / G N} c Elyey^v'

{#," I 7 € N} has an accumulation point an . By Lemma 2.1, an is discontin-

uous, say at yn . Notice that yn G Y . Since Y ' is sequentially compact,

without loss of generality we may assume that there is y e Y such that yn —► y .

Let {Vn | « e N} be a decreasing open base at y. Without loss of generality

veK.
J n n

Since Y is first countable, for every « e N there is a sequence (y"k)k in Vn

such that yl —* y„ and

(*) an(ynk)**an{yn)-

Let K = \JneN\\keN{yn ,y^}U{y}. Then K is compact. Indeed, let 'V be an
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open cover of K. There is V G 'V with y G V. There is «0 G N such that

y G Vno C V. Then U„>„0 IW^ ,v>M c K. Since Un<„0 UeN{v„ ,y"k}
is compact, we are done.

Since K is compact, it is bounded in Y. So by Proposition 1.4, supp K is

bounded in X. Since F is closed and discrete and X is normal, F is not

bounded. This implies that there is « e N such that xn <£ supp K. Since

X is regular there is j0 G N and a neighborhood V of supp-rv such that

U" n V = 0 . So for every z G K and j ~t j0 , f" and the zero function on X

are equal on V, which is a neighborhood of supp(z). Since <f> is linear and

effective, this implies that g"(z) = 0 for every j > j0 and z G K. But then

on(y"k) = 0 and o„(yn) = 0, which gives a contradiction with (*).   D

By X © Y or ©^, X¡ we denote the topological sum of the topological spaces

X and Y or X¡(i G N), respectively.

2.3 Example. In this example we show that the first countability condition in

Theorem 2.2 is essential.

Let X = ©°!,[1 ,o)]r Let A = Xw and Y = Yx A the quotient space

obtained from X by identifying A to single point, say oo. Then X is clearly

first countable and normal, and Y is normal but not first countable. By Lemma

1.1 we have Cp A(X) ~ Cp 0(Y). Furthermore we have

oo

^w-IK.o«1^]),
i=\
OO

~ Y\Cp([l ,œ])  (Lemma 1.2a)
i=i

~ CP(X)-

Notice that for every Tychonov space Z  and for every  z G Z,   C (Z) ~

C 0(Z)xR, where C 0(Z) consists of those functions in CAZ) which vanish

at z. So by Lemma 1.2, Cp([\ ,ca\) ~ Cp([l ,co]) x R. This implies C (X) ~

Cp(I)xR. So

Cp(^) ~ Cp(X) x R

-Cp,(I)xR

~cp0(y)xR

However X = A is not countably compact, and F(l) = {oo} is countably

compact.

From Theorem 2.2 and the result in [1] for normal spaces, that if C'AX)

and CAY) are linearly homeomorphic and X is countably compact, then Y

is countably compact, one could conjecture the following: Let a be an arbitary

ordinal.   If X and  Y are both normal and first countable spaces such that
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CAX) and C'AY) are linearly homeomorphic and X  ' is countably compact,

then y*7 is countably compact.

In the next example we show that if a is not a prime component, then the

conjecture is false.

2.4   Example.  Let a < col  be an ordinal which is not a prime component.

Observe that in this situation 1 < a < a.

Let X = ©£,[1 ,co"']l and Y = ©~,[1 ,o)a]r By Theorem 1.3, Cp[\ ,of']

~ Cp[\ ,ö"], so that Cp(X) ~ Cp(Y). But Y{a) « N (see [2] or [6] p. 155)

which is not countably compact, and X    = 0 which is countably compact.

Questions. (1) Is the above conjecture true for prime components?

(2) Does Theorem 2.2 still hold if normal is replaced by Tychonov?
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