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THE DENSITY OF ALTERNATION POINTS
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(Communicated by Irwin Kra)

Abstract. We investigate the behavior of the equioscillation (alternation)

points for the error in best uniform rational approximation on [—1,1]. In

the context of the Walsh table (in which the best rational approximant with

numerator degree < m , denominator degree < n , is displayed in the nth row

and the mth column), we show that these points are dense in [-1,1], if one

goes down the table along a ray above the main diagonal (n = [cm],c < 1).

A counterexample is provided showing that this may not be true for a sub-

diagonal of the table. In addition, a Kadec-type result on the distribution of

the equioscillation points is obtained for asymptotically horizontal paths in the

Walsh table.

1. Statement of results

Denote by âlm n the rational functions with numerator in l\m , the set of

algebraic real polynomials of degree at most m, and denominator in Yln . Then

the best approximation r*m n = P*mn/q*mn in Mmjt to f e C[-l ,1] with

respect to the uniform norm

(1-1) ||s||M;1]:=sup{|s(.x)|:x€[-l,l]}

is unique and is characterized by an equioscillation property [M], i.e., there are

m + n + 2- d points

t\  -)\ i  ^     (m >n) {m ,n) 1
\[ -l) ~l - X\ < < Xm+n+2-d - [ '

where

(1.3) d := d(m , n) := min{m - degp*m n,n- de%q*m n} ,

such that for a o = ± 1 and allfc=l,...,/n-r-n-t-2-rf
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(Here and below, we assume that p* „ and q* „ do not have a common factor.)

Much is known about the behavior of alternation points for best polynomial

approximation (n = 0). For this case, Lorentz [L] and Kroó and Saff [KS] give

examples showing that for a subsequence {mk} the alternation points (1.2),

with m - mk , n = 0, may avoid a subinterval of [-1 ,1]. However, Kadec

[K] proved that there is always a subsequence such that the alternation points

behave like the extremal points of the Chebyshev polynomial of degree m + 1,

that is, like {cosrrc7t/(m +1)]}^0 • For polynomial approximation, this implies

the denseness of the alternation points in [-1,1].

For rational approximation, given m and n, we pick any alternation set

(1.2) and write

(1.5) Pmn(f):=    sup   min|x-4m'")|
jre[-l,l]    k

as a measure for the density of the alternation set in [-1,1]. We shall prove

Theorem 1.1. Let n = n(m) satisfy

(1.6) n(m) < n(m + 1) < n(m) + 1 ,       n(m) < m ,

for m = 0,1,.... If feC[-l,l], ftamMm),m = 0,l,... ,  then

.im - n(mf
(I-7) liminf   —;--—-   o   ,,„,(/) < oo.
V       ' m—oo   \      logm      J^m,n(m)\J)

The proof of Theorem 1.1 will be given in §2.

Remark. Theorem 1.1 applies in the case n(m) = [cm] for any constant c < 1,

where [•] denotes the greatest integer function. If c < 1, we deduce from (1.7)

that

(1.8) liminf^ [fm](/) = 0,

which implies that the alternation points are dense in [-1,1] for such a "ray

sequence" of best approximants. On the other hand, we show in Theorem 1.3

below that this density may not hold when m/n(m) —► 1.

Our second result is similar to Kadec's result [K] on polynomial approxima-

tion. We write for -1 < a < ß < 1  (with x(km'n) as in (1.2))

(1.9) Nmn(a,ß):=#{x(km'n):a<x(km'n) <ß, k=l,... ,m + n + 2-d}.

Theorem 1.2. Assume, in addition to the hypotheses of Theorem 1.1, that

(1.10) lim ^1 = 0.
m—>oo     m

Then there exists a subsequence Ci of N such that for all [a , ß] C [-1 ,1 ],

,, ... ..       ^m,n(m)(Q'^)      arc cos a - arc cos ß
(1.11) hm   —-   ' =--.

m^?? Nm .,„,,(-1 ,1) nmC.il       m ,n(m)^ '

Finally, we give a counterexample, which shows that Theorems 1.1 and 1.2

cannot be proved for a subdiagonal of the Walsh table. Indeed, for approxima-

tion in ¿%n_ j it is possible that, for all n , the extremal points all reside in an

arbitrarily small interval.
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Theorem 1.3. For every 2 > e > 0, there is a function f e C[-l , 1] such that

for each «=1,2,... the error f - r*_, n(f) has no alternation points in

(-l+e,l].

The proof of Theorem 1.3 will be given in §3. The results of this paper should

be compared with those of Kroó and Peherstorfer [KP] for Lx -approximation.

2. Proofs of Theorems 1.1 and 1.2

We need the following lemma, which follows easily from classical results. We

include the proof for the sake of completeness.

Lemma 2.1. Given -1 < a < ß < 1 and n e N there exists a pnel\n with

(2-1) ll^ll[-l,a]U[^,.]<1'

and

(2-2) \\Pn\\a,ß]>c/Mß-a\

where cx ,c2> 0 are constants independent of a , ß and n .

In (2.1) and (2.2) the norms are again the sup norms over the indicated set.

Proof. Let

(2.3) Tm(x) := cos(marccosjc)

denote the Chebyshev polynomial of degree m. For m := [n/2], t :=

(ß - a)/2, set

(2-4) ^W:=K(1 + T-(2 + t)t)'
Since t < 1 and

(2.5) r-ríi+.?)>.Kí. + y^)M,     »>o>

we have for some constants c, , c2 > 0 :

(2-6) ^(0) = ^m(l + ^)>i(l+r)'">c1e^-").

For xe[-2, -t]U[t,2],

(2.7) -^1 + T-(2+T)T<L

The lemma now follows with P„(x) := qn(x - (a + ß)/2).   D

Proof of Theorem 1.1. Set EJf) := \\f - r*mn{m)\\[_x X] for m e N.   Since

/ £ 31 m n(m), we have Em(f) > 0 for all meN. Also, from (1.6), it follows

that £,„(/) I 0, and so from elementary theorems about series (cf. [K])

(18) h Ejf)* 07) ~°°-
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/'i < < \ ,   ^     (m) im) . .
(2-11) -1<*     <---<x(Jn(m)+2,(m)<l

Thus there is a subsequence Q of N with Em(f) - Em+X(f) ^ 0 and

(29) EJf) + Em+x(f)        2
(     ] Em(f)-Em+X(f)<m

for all m eQ.

For m e Q, set

(2-10) R„ := Ejf) _ E^{f) (rm Mm) - rm+x >||(m+1)).

At the alternation points

— ■*]      ^ "" "*■ -*m+n{m)+2-d(m) -

°f f~rm ,n{m)   We haVe WÍth  a = ±1

(2.12) rj(-l)':JROT(4'")) > 1 ,        k = l,... ,m + n(m) + 2-d(m).

Moreover, from (1.6) and (2.12) it follows that Rm = PJQm with

(2.13) degPm = m + n(m)+l-d(m),

(2.14) degQm<2n(m) + l-d(m).

Thus Rm- q can have at most m + n(m) + 1 - d(m) zeros, if q e flm_n,m\ ■

Let c, ,c2 be as in Lemma 2.1. For m e Q, let xm e [-1 ,1] satisfy

(2.15) min|x* - x{km)\ = />m B(M)(/) =: tm.

If xme[-l ,x\m)], we let Pm_n(m) be the polynomial that satisfies Lemma 2.1

with a = -1 and ß = x\m). From (2.12) and (2.1) it follows that Rm±Pm_n(m)

has m+n(m)+l-d(m) zeros in (x\ , I] and hence is zero-free in [-1 ,x\ ].

Thus

/i i ¿\ Citm(m—n(m))    . M ,,    ,, 2
(2.16) c,e2 <ll*JI[-i,i]<™  '

where the last inequality follows from (2.9). If x*m e [x(^ln(m)+2-ä(m) > I]. we

use Lemma 2.1 with a = ^mln^+i-dim) anc* ß = 1 an<^ a6am we 8et (2.16).

Otherwise denote the zeros of Rm by yk   , where

O 17\ (m) ("i) (m) (m) (m)
(Z.l/J X,      < V,      < X2      <■■■< yTO+„{m)+,_</(„)< xm+n(m)+2-d(m) '

flnrl set v(m) — r(m)   v(m) — x(m) Then lv(m)-v(m) I > /
ana Set V0     .- Xx     ,ym+n{m)+2^d{m) — xm+n(m)+2-d{m) •  inen 1^       ^+ll ^ 'm

for some k = k*. As above, counting the zeros of Rm ± (pm_n,m) - 1 )/2, where

Pm-n(m) satisnes Lemma 2.1 with a = y^T1 and ß = y[T{,, yields

(2.18) i (c1/2'"'(m-"(m)) - l) < w2.
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By (2.16) or (2.18) we get for a constant c3 > 0

(2.19) tm(m-n(m)) <c3logm ,

which yields (1.7).     G

Proof of Theorem 1.2. It suffices to prove (1.11) for the case a = -1. In fact,

it is enough to show that

,..m ,. Nm,n(m)(~l 'PÏ        71-arCCOS ß
(2.20 hm sup        K ' <-£ ,

m—oo    Nm _/_»(— 1 , 1) 71
meO m,n(m)\ >

since replacing x by -x and /? by — ß , we get the corresponding lower esti-

mate for liminf. Let m-n(m) = s(m)+l(m), where s(m) is to be determined

later. With the notations of the previous proof, set for »ieíí,

(2-21) °m(x)--=\Ts(m)(x+l-ß)Tl(m)(x),

(2.22) N(m) := #{x e (ß , 1]: \T¡(m)(x)\ = 1 , \qjx)\ > m2} ,

where Tk denotes the kth the Chebyshev polynomial, ||rj|r_, xx = 1 . Then

Rm - qm has at least N(m) - 1 zeros in (ß , 1]. Thus it can have at most

m + n(m) + 2- d(m) - N(m) zeros in [-1 ,/?]. Hence

>,,«„ ^m *(«>(-l >£),«,., m + n(m) + 2-d(m)-N(m)
(2.23) hmsup -,     v     .—-—rr- < hmsup-J-—.-r-^--j-.-r-^-

m^oov Nmn(m)(-l,l) -  m^ooy       m + n(m) + 2-d(m)

,     ,-    ■ çN(m)
= 1 - hm inf —-—- ,

m—»oo       m

since between two alternation points of Rm in [-1 , ß] is one zero of Rm - qm

and since n(m)/m -* 0 (d(m) < n(m)). In (2.23) and the rest of the proof, all

limits are for mgfl. Now choose s(m) such that

11 i,n i-        s(m) i-        l(m)        i
(2.24) hm r-*—- = oo,      hm ——- = 1.

m->oolOgm m-»oo    m

Then the first equation in (2.24) together with (2.5) yields

(2.25) lim (inf{* e (ß , 1]: \T'{x + I - ß) > m1}) = ß.

Also, for ß < ß < 1, it follows from the second equation in (2.24) that

„™ ,.     #{xe(^,l]:|r    (x)| = l>     arceos^
(2.26) hm -—-—.

m—>oo m 71

Finally, (2.25) and (2.26) yield (with (2.21) and (2.22))

•-_, ,.    . fN(m) ^arceos)?
(2.27) hminf-±-¡- >-,

m-»oo        m %

which together with (2.23) gives (2.20).   a
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3. Proof of Theorem 1.3

0 we de

monic polynomial that minimizes

For a, < ■ • < an < 0 we denote by Vn_x(ax , ... ,an) = x"     + ■■■   the

(3.1)
'n-\

(x)

n¡L,(*-a*)
[0,1]

among all monic polynomials Pn_x of degree n - 1. Set

V„  .(a. , ... ,a)(x)

<3'2» V.C..'.M»    -{¿.ix-al)       ■

Then from the Haar condition (cf. [M, §3.2]), rnX(ax , ... ,an) is uniquely

determined and equioscillates n times in [0,1]. Moreover, these n equioscil-

lation points are the only extremal points of rn_x(ax , ... ,an) in [0,1], since

rn-i(a\ > ••• >a„) - c can nave at most n zeros for each c e R and since

rnl(a, , ... ,an) has all its n - 1 zeros in [0,1]. Also, zero must be one of

the equioscillation points, since \rn_x(ax , ... ,otn)(x)\ decreases between an

and the first zero of rn_x(a{ , ... ,an).

We need the following lemmas.

Lemma 3.1. Let a, < • • • < an < 0 and /?,<•••< ßn < 0 satisfy ak <

ßk for k =  1 , ... ,n.    Then the equioscillation points xx  < ■ ■ ■ < xn   of

rn_x(ax , ... ,an)  and yx  < ■ ■ ■ < yn  of rn_x(ßx , ... ,ßn) satisfy xk > yk

for k = I , ... ,n.

Proof. It suffices to prove the lemma in the case ak = ßk for k ^ k*, ak. <

ßk. , since we can transfer an to ßn , ... ,ax to ßx successively. Define

(3-3) Ca:=l/\\rn_x(a)\\[0X],

(3-4) C#.:=-.l/llr-iCË)HlP.ip

where a = (a, , ... ,afl), ß_ = (ßx , ... , ßn), and set

q(x) := Caix - ßk.)Vn_x(a)(x) - Cß(x - otk.)Vn_x(ß)(x)

(3'5) =(Cjn_](a)(x)-Cßrn_x(ß)(x))(x-ak.)(x-ßk.) l[(x-ak).
k¿k"

By the equioscillation, we have (y. = 0)

(3.6) <7(y„)<0,«7(y„_,)>0,...,<7(0) = 0.

It is easy to see that Ca > Cß . Thus there is a point x > yn with q(x) > 0.

For the (necessarily real) zeros c¡x < ■ ■ ■ < t\n of q (some zeros may be counted

twice), this implies t\k > yk for k = 1 , ... ,n . We also have (xx = 0)

(3.7) d(xn)>0,q(xn_x)<0,... ,<?(0) = 0.
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For every e > 0, there is a polynomial q e l\n with highest coefficient Ca - C„

and real zeros Çx < ■ ■ ■ < Çn such that

(3.8) q(xn)>0,q(xn_x)<0,... ,q(0)<0       for n even,

q(0) >0       for «odd,

(3.9) &-•&!<«-.       k = l,...,n.

It follows that ¿, < 0 and thus xk > ¿¡k for k = 1 , ... ,n. Since e > 0 is

arbitrary, this implies xk>c;k>yk for k = I , ... ,n .     O

Lemma 3.2. Given 0 < e < 1 there is an increasing sequence ax < a2 < ■ ■ ■ < 0,

such that rnX(ax , ... ,aj has no extremal points in (e , 1] for n > 1.

Proof. Set ax := -e/4. We will construct an*by induction such that the func-

tion

(3 10) f(x)-=n"^x + 2ak)

alternates in sign in the points

(3.11) 0 = á, „<••■< ôn n <ev 7 l ,n n ,n

and satisfies

(3.12) l/B(¿fc,fl)l>l/„(*)l       fork = l,...,n,xe[e,l].

If we have this sequence, rn_x(ax , ... ,an) cannot have an alternation point

in (e , 1 ] for n > 2, since otherwise for a suitably chosen y e R the function

/„ _ y„_i(ä, , ... ,an) has a zero in each interval (Sk n ,Sk+x n) and an addi-

tional zero in (ôn n , 1 ).

We observe now that fx(x) = l/(x -ax) is decreasing in [0 ,1] and satisfies

(3.12) with ¿j , = 0. Having constructed ax , ... ,an_x , we observe that

(3.13) lim  X+   a" = 1 uniformly on [A , 1]
a„—o- x - an

for all A > 0. Thus, for \an\ sufficiently small, (3.12) will be satisfied for

4,„+i := Ci,«' k = 3,--. ."+ 1 and for SXn+x := ôx n = 0. Thus it
remains to show the existence of ô2 n+x. Since ^,+1(0) = -2/n(0), this follows

from (3.13) by choosing \an\ small enough.   D

Proof of Theorem 1.3. We will prove the theorem on the interval [0,1]. Choose

ax,a2, ...  as in Lemma 3.2 with e/2 replacing e. Let, for bk > 0,

(3.14) Sn(x):=J2~^-
M X - U2k

We now use a result in [B] stating that the best approximation to Sn out of

has the formn-2,n-l

P'n-liX)
(3.15) rB.2i„_1(5„)(x)=r

nz:o*-«k=\^      "2k + \'
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where p*n_2 is of degree n - 2 and

(3.16) a2<a\ <ö4<    •• <a\n-\ <a2n <°.

Thus, by the equioscillation property (1.4), there is a constant cn such that

(3-17) Sn-r*n_2n_x(Sn) = cnr2n_2(a2,a¡,a4,... ,a2n).

Since r2n_2(ax , ... ,a2n_x) has no alternation point in (e/2,1], Lemma 3.1

shows that Sn - r*_2 n_x(Sn) has no alternation point in (e/2 ,1]. We choose

the bk 's such that

OO I

(3.18)        the series f(x) = ^-— converges uniformly on [0,1],
k=i X ~ a2k

and

(3 19)        r*n-2,n-M) is close enough to r*n_2n_x(Sn) to guarantee that

/ - r*_2 „_,(/) has no alternation point in (e , 1].

For (3.19) we used the fact (cf. [W]) that the best approximation operator is

continuous in Sn, since r*_2 n_x(Sn) is nondegenerate (i.e.   d = 0 in (1.3)).

D
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