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ON KODAIRA VANISHING FOR SINGULAR VARIETIES

DONU ARAPURA AND DAVID B. JAFFE

(Communicated by Louis J. Ratliff, Jr.)

Abstract. If A" is a complex projective variety with an ample line bundle

S? , we show that H'(X,^f~l) = 0 for any i < codim[Sing(A')], provided

that X satisfies Serre's condition Si+i . We also give examples to show that

these results are sharp. Finally, we prove a vanishing theorem (for Hl ) for

seminormal varieties

Introduction

Consider a complex projective variety X, together with an ample line bundle

Jz?'. Kodaira [4] has proved that if X is nonsingular, then H'(X ,2'~x) = 0

for all î < dim(X). To what extent is this true when X is singular? If one

is only concerned with the depth and the dimension of the singularities of X,

then there is a simple answer: H' vanishes provided that /' < codim[Sing(X)]

and X satisfies property S¡+x of Serre. If X is Cohen-Macaulay, this was

known: see [8, §7.80]. We reduce to this case easily. Our result generalizes a

theorem of Mumford [7], who proved that if X is normal (of dimension at

least two), then H   vanishes.

The above vanishing criterion cannot be improved in any naive way.

Grothendieck knew that the depth condition was essential [3, XII 1.3]. The reg-

ularity condition is also essential: for any integers 0 < i < n, there exists a pro-

jective Cohen-Macaulay variety X of dimension n , such that codim[Sing(X)]

= i, together with an ample line bundle 5C such that H'(X ,&~x) ¿ 0. If

i > I, these examples are trivial variants of an example of Sommese [9]. For

i' = 1, a different construction is needed.

One may search for more delicate local criteria for vanishing. For instance, a

consequence of [2] is that //' vanishes if X has rational singularities: see [8].

By definition, if X is rational, it is normal, so this criterion is not applicable to

singularities which live in codimension one. We prove a theorem which applies
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to exactly this situation: if X is seminormal, S2, and has dimension at least

two, then HX(X ,Sf~x) vanishes.

In this paper, we shall assume that all varieties are defined over C.

1. Vanishing based on regularity and depth

We prove:

Proposition 1.1. Let X be a projective variety, and let Sf be an ample line

bundle on X. Fix k > 1. Assume that k < codimtSing(A')] and that X is

Sk+X. Then Hk(X ,Sf~l) = 0. (If X is smooth, we define codim[Sing(X)] =

dim(X).)

Proof. The statement was known if X is Cohen-Macaulay.   (See [8, §7.80].)

Let n = dim(X). Let H c X be a sufficiently general and sufficiently ample

hyperplane. We have an exact sequence

0^Sf~l(-H)^Sf~l -*Sf~\H^0,

and taking cohomology we obtain

Hk(Sf~X(-H)) -+ Hk(Sf~X) — Hk(Sf~X\H).

We may assume that X is not Cohen-Macaulay and hence that k + 1 <

dim^). This, together with the appropriate Bertini theorems imply that k <

codim[Sing(//)]   and that   H   is   Sk , .     Since   X   is   Sk+X ,  a result of

Grothendieck [3, XII 1.3], implies that Hk(Sf~x(-H)) = 0 so long as H is

sufficiently ample. By induction on the dimension H (Sf~x\H) is zero, hence

the result,   a

Remark 1.2. Let Irr(X) denote the irrational locus of X, given by

Irr(X) = USupp(JR'^~),
<>0

where n:X —» X is a resolution of singularities. In the proposition, one

can weaken the hypothesis on the singular locus to the condition that k <

codim[Irr(Ar)]. The same proof works, allowing one to reduce to the case

where X is Cohen-Macaulay, which is well known. One needs to known

the following Bertini-type lemma: if H c X is a general hyperplane, then

Irr(Z n H) c Irr(X) n H. The proof of this lemma is left to the reader.

2. Counterexamples

The result of this section is: Fix integers 0 < k < n. Then there exists a

projective Cohen-Macaulay variety X of dimension n, with codim[Sing(X)] =

k, and an ample line bundle Sf on X such that H (X ,Sf~ ) ^ 0.

Actually, except for the case k = 1, this is obtained by a trivial variant of a

known construction [9, 0.2.4]. The author has kindly informed us of a critical

typographical error, so we summarize the construction for the convenience of

the reader.
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We first assume that k > 1. (The case (n = 3 , k = 2) occurs in [9].) Let

F = P(cVi.©[eV,(l)f(*+1)).

Let y denote the tautological bundle on P. Let X be a general member of

the linear system associated to [^<8>¿fp„_t(-l)]®(*+2). Let Sf = 3~®&Y„_k(l).

Then H (X ,Sf~x) ^ 0. The fibers of X —> P"~    are cones, each having a

unique singular point. Some details may be found in the original source.

Now we deal with the case k = 1 . We describe the subcase n = 2. The

construction is easily modified for higher values of n .

Let Y be the ruled surface P((fp,®(fpl(-2)). Let C0 and Cœ be the sections

of n: Y —> P with self-intersection -2 and 2, respectively. (So Q ~ C0+2/.)

Let / be a fiber of n . Let X be the cyclic double cover of Y, branched along

the divisor 3C0 -I- C^ . (The divisor 3C0 + C^ is uniquely divisible by 2 in

Pic(y): 3C0 + Q ~ 2(2C0 + /).) Let Sf be the line bundle on X which is the
pullback to X of cfY(CQ + 3/). The singularities of X are analytically of the

■y -i
form C[[x ,y , t]]/(x + y ). Then X is Cohen-Macaulay (but not normal), Sf

is ample, and H (X ,Sf~ ) ^ 0. (One may calculate that

H\X ,Sf~X) = HX(Y ,cf(-C0 - 3/)) 0 HX(Y ,cf(-3C0 - 4f))

and the second summand is nonzero.) The details are left to the reader.

For higher values of n, replace P1 by P"_l, and replace Sf by cfY(CQ +

(n + l)f).

3. Vanishing of Hx for seminormal varieties

The result of this section is:

Theorem 3.1. Let S be a projective seminormal S2 variety of dimension at least

two. Let Sf be an ample line bundle on S. Then H (S ,Sf~ ) = 0.

Remark 3.2. It is known [5, 3.9] that seminormal S2 varieties have a partic-

ularly simple geometry: they are those S2 varieties, which (outside a subset

of codimension two) look locally like JVxC', where N is the union of the

coordinate axes in C  . (But k can vary.)

We need the following well-known lemma:

Lemma 3.3. Let X be a reduced projective scheme over C (having no zero

dimensional components). Let Sf be an ample line bundle on X. Then
H°(X ,Sf'x) = 0.

Proof (of Theorem 3.1 ). We first prove the theorem in the case where S is a

surface. Let n:S —* S be the normalization map. let S be the conductor of

<f~ into <fs . It is a sheaf of ideals in both <fs and in cf~. Let A be the closed

subscheme of S determined by J^, and let A be the closed subscheme of S

determined by J^. By [6, 1.5] or [11, 1.3] A and A are reduced schemes.

(This is the only place where we use the hypothesis that S is seminormal.)
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We shall make various calculations with ¿^-modules, and we shall write for

instance cf~ instead of ntcf~, to avoid cumbersome notation.

There is an exact sequence of ¿^-modules

0 — if,. '-¿U<?7@&A -±+&~-* 0
J 6 Ci A

which is obtained from the canonical maps of ^-modules:

P2:cfs^cfA

qx:cf~^6?~

q2:c?A^cf~

by P - Px+ P2 and q = qx - q2. It is easy to verify that the sequence is in

fact exact. (This exact sequence has been used by Steenbrink [10], proof of

theorem 3.)

Tensor the given exact sequence by Sf~ and compute the long exact se-

quence of cohomology on S. By (3.3), H°(Sf~x ®cf~) = 0. Hence we have an

exact sequence:

0 - Hx(Sf~x) - Hx(Sf'x ®cf~)®Hx(Sf~X ®cfA) M Hx(Sf'x ®cf^).

We must show that </> is injective. Observe that Hx(Sf~x ®cf~) is isomorphic

to HX(S ,n*Sf~x). This is Hx of the dual of an ample invertible sheaf on a

normal surface, which by a theorem of Mumford [7] is zero. (This also follows

from 1.1.)

We have exact sequences:

O^cf.^cf.    -+ .# ^ 0
A A„0r

and

0 _ cf~ — tf~    ^Jf^fj.
A Anor

Then Jf and Jf have finite support, so J? = Jt' ®Sf~~ and JÍ = JK' ®Sf~ ,

noncanonically. We obtain:

0   -.   H°iJf)   -   Hx(Sf~x®cfA)   -   Hx(Sf~x®c?AJ   -    0

Ipd^f) \pi(S) Ui(&)
0   -»   H°(J?)   -   Hx(Sf~x®cf~)   -»   Hx(Sf~x ®cf~   )   -   0.

We want to prove that p2(Sf) is injective. It suffices to show that p3(Sf) and

px(Sf) are injective. Now p3(Sf) is injective because cfA is a smooth curve

(perhaps disconnected) and hence the map

Anor Anor

of cf.   -modules is split injective (via trace). Because S is Cohen-Macaulay,

the Serre duality and Serre vanishing theorems imply that H (Sf") = 0 for

n » 0.  Hence p2(Sf") is injective for « » 0.  Hence px(Sf") is injective
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for n > 0. But px(Sf) is independent of Sf, so in fact px(Sf) is injective.

Hence p2(Sf) = </> is injective. This proves the theorem in the case where S is

a surface.

Now we prove the theorem in the general case, by induction on the dimension

of 5. If dim(5") = 2 we are done. Otherwise, embed S in some projective

space P. Since S is S2, we know by the lemma of Enriques-Severi-Zariski that

HX(S ,Sf~x(-n)) = 0 for n > 0. Changing the embedding, we may assume

that HX(S,Sf~x(-l)) = 0. By the Bertini theorem for seminormality [1, 3.9

or 12], one knows that there exists a hyperplane H c P such that S n H is

seminormal. Also, we may choose H so that S n H is S2. Tensor the exact

sequence:

0-<*,(-!)-^s-^n*-0

by Sf~   and compute H . The theorem follows immediately.   G

Remark 3.4. If the ground field has positive characteristic, by adding suitable

hypotheses one can still make the proof work: let S be a projective seminormal

Cohen-Macaulay surface. Assume that the Picard scheme Pic^^) is reduced.

Let Sf be an ample line bundle on S. Then HX(S ,Sf~x) = 0.
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