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AN INVARIANT OF DICHROMATIC LINKS

JIM HOSTE AND JOSEF H. PRZYTYCKI

(Communicated by Haynes R. Miller)

Abstract. We define a new polynomial invariant for a special class of dichro-

matic links. This polynomial generalizes the Jones polynomial.

A l-trivial dichromatic link in S3 is a link having at least two components,

one of which is unknotted and labeled, or colored, " 1 ", while all other compo-

nents are colored "2". By using methods similar to those of Kauffman [K], we

define a polynomial invariant of such links which is analogous to the Jones poly-

nomial [J]. This polynomial has since been generalized by Hoste and Kidwell

[H-K]. However, their approach is far more complicated, just as the establish-

ment of the skein polynomial is more complicated than Kauffman's approach

to the Jones polynomial [F-Y-H-L-M-O, P-T].

If L is a l-trivial dichromatic link, then we may isotope L until the

l-component, that is the component colored "1", is the z-axis union the point

at infinity. If we now project the link into the x-y plane we obtain a dia-

gram of the 2-sublink in the punctured plane R - {0} . We may obviously use

such punctured diagrams to represent 1 -trivial dichromatic links. We may alter

punctured diagrams by Reidemeister moves in R - {0} and also by "flipping

them over". That is, by replacing the projection of L with that of p(L), where

p is the 180° rotation of S around the x-axis. The following theorem as-

serts that these alterations suffice to pass between all punctured diagrams of the

same link.

Theorem 1. Two punctured diagrams represent equivalent l-trivial dichromatic

links if and only if one can be transformed into the other by a finite sequence

of Reidemeister moves in R - {0}, preceded by possibly flipping over one of

the diagrams.

Proof. Suppose D and D1 represent 1-trivial dichromatic links L and L'

whose 1-components L, and L\ are the z-axis union the point at infinity and

whose 2-sublinks L2 and L'2 project to D and D', respectively. Let / be an
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orientation preserving homeomorphism of S which takes L, to L'x and L2

to L'2. Suppose first that / preserves the orientation of the z-axis. Clearly /

is isotopic to a map f which, in addition to taking L to L1, is the identity on a

regular neighborhood N of L, . Let X = c\(S -N) and consider f restricted

to X. This is a homeomorphism between solid tori which is the identity on the

boundary. Since every homeomorphism between solid tori is, up to ambient

isotopy, a power of a Dehn twist about a meridional disk, we see that f is

ambient isotopic to the identity. By modifying / ina collar of X we may

further assume that f is ambient isotopic xt\dX to the identity. This yields

an isotopy of 5" rel N which takes L2 to L'2. Projecting this isotopy into the

x- y plane, we see D taken to D' in the complement of a disk centered at the

origin. The usual proof that this can be accomplished by a finite sequence of

Reidemeister moves can now be employed.

If originally / reverses the orientation of the z-axis then we may begin by

flipping D' over,   a

If D is a diagram, we denote by sw(£>) the self writhe of D. This is the sum

of the signs of those crossings between strands belonging to the same component.

Theorem 2. There exists a unique polynomial invariant in Z[A ' ,h] ofunori-

ented 1 -trivial dichromatic links given by

dL(A,h) = (-A')-SWiD)(D),

where D is any punctured diagram of the link L and (D) is the invariant of D

determined by the following properties:

i- <-o> = i.
3- (X) = MX)+ A~l {)={),

4- (-0*> = -(^2+^2)W, K¿0,

5.   (QK) = -(A2 + A-2)h(-K), K¿0,

Here we follow Kaufman's notation [K] with the additional convention of mark-

ing the puncture with a dot. Later, when working with ordinary diagrams, we

will also subscript the components with their colors.

Proof. Let D be a punctured diagram. Then, proceeding in a fashion similar to

Kauffman [K], one sees that Properties 1-5 uniquely determine (D). Moreover,

(D) is preserved by Type II and III Reidemeister moves as well as flipping over

the diagram. However the effect of a Type I Reidemeister move is given by

<X = -4"30>.       (>) = _^(^_

From this it follows that d is a well-defined isotopy invariant of unoriented

l-trivial dichromatic links.    D

Of course, d behaves similarly to the Jones polynomial with respect to con-

nected sum, mutation, companionship, etc. Therefore, we list only a few addi-

tional properties of d.
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1. Let L be a link represented by the punctured diagram D. Let L be

represented by the diagram D obtained from D by reflecting in the plane

of the projection. In other words, D is obtained from D by changing every

crossing from over to under. Then

dL(A,h) = dT(A-\h).

2. If one uses ordinary diagrams rather than punctured diagrams then the

following "clasp" rule holds

A2d*  + A~2dv  =(A2 + A~2)hdY ,       i^j.
i A j ( /\j i -J< j

3. Using ordinary (or punctured) diagrams, one has the following rule

(-A3ri2X2)dv   = A(-A3ri2X2)d v +A-l{-A3f*1*l)(Li .
V ' 2Ä2 v ' 2 JL 2 V ' -r-\l

4. We may define an invariant d of l-trivial dichromatic links with oriented

2-sublink as follows. In general, if L is any link, some of whose components

are oriented, let lk(L) denote the sum of the linking numbers between each

pair of oriented components. Now let

7 ,       .3,-21k(L)    ,
dL = (-A ) dm ,

where \L\ denotes L stripped of its orientation. Then, again using ordinary

(or punctured) diagrams, the following rule holds

Ad^^-A    d^y*^ = (A     -A)d^^.

5. If L is a l-trivial dichromatic link, let wrap(L) be the wrapping num-

ber of the 2-sublink around the 1-component. That is, the minimal geometric

intersection number of the 2-sublink with any disk spanning the 1-component.

Then

deg^ dL < wrap(L),

where degA is the highest degree of h appearing in dL .

6. (a) If the 2-sublink L2 is oriented then the Jones polynomial of L2 is

VL2(A-"*) = dL(A,\).

(b) If L is oriented then the Jones polynomial of L is

VL(A~Ui) = -(A2 + A~2)(-A3)'2mL) d¡Ll(A , (A4 + A~A)/(A2 + A~2)).

We mention two applications of d .

Suppose L is a link that is both l-trivial and 2-trivial. In other words the

2-sublink is also an unknot. Hence we may compute d relative to either com-

ponent. Call these two invariants d and d , respectively. If L is interchange-

able, that is, there is an isotopy exchanging the components, then dL = dL.

We may also use d to investigate periodic links.
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Theorem 3. Let r be prime. Suppose L isa 1 -trivial dichromatic link invariant

under a Zr-action on S   with fixed point set the l-component. Then

dL(A,h) = dL(A  ' ,h)moà.(AAr l.r).

In other words, the two polynomials differ by an element of the ideal generated

by A r - I and r.

Proof. We can find an oriented punctured diagram D having /--fold rotational

symmetry and such that \D\ represents L. Let Dsymry¿), A¡ym(X) and ^symfif)

denote three punctured diagrams having r-fold rotational symmetry and which

are identical except near the orbit of a single crossing where, at all r crossings,

they appear instead with right, left and smoothed crossings respectively. Now

using an idea of Murasugi's [M] (see also [P2]) and Property 4 we obtain

A4rd,
'syml^l

A~4rl
Wm(X >

(A-2r-A2r)dD^
■Wmod r.

Therefore

and hence

à
ösvm(^) Aym(^)

mod (A ' - 1 , r)

Ar
dD = dD    v mod (A   - 1 , r).

But this allows one to change \D\ to \D\ without changing d mod (A

Now applying Property 1 gives the desired result.   D

4r
I,/")

Example. Let L = 7,  with the components colored as shown below.   Then

rf' = .An + A* + A-4 + (Ai2
■A* + \ A    )/i  . It is laborious to compute d

but one can compute the coefficient of h   more easily. It equals A    +2A

2A - 1. Hence 76 is not interchangeable and the wrapping numbers are 2 and

4, respectively. By Theorem 3, there are no r-fold rotational symmetries about

the l-component with r > 3 or about the 2-component with r > 2 where r is

prime.
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Finally, we note that Theorem 2 can be interpreted in the language of skein

modules [PI]. In particular, the theorem implies that the skein module,

is a free module with infinite basis {Ä,}°!0, where hQ is an unknot and ht

consists of i longitudes.
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