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Abstract. In this paper we introduce the concept of virtually regular covering,

which include all regular branched coverings and also some irregular ones. We

prove that, as in the case of regular coverings, some properties of the branching

set reflect properties of the cover for virtually regular coverings of S3, gener-

alizing results of Kim-Tollefson, Lozano and Plotnick. As a consequence, we

obtain that every virtually regular cover of S3 branched along a fracturable

prime and non split link is Haken.

Introduction

One way to study 3-manifolds is by representing them as covers of the sphere

S branched over links. It is known that some properties of the branching set

reflect properties of the cover in the case of regular branched coverings. For

instance, it was proved by Kim-Tollefson for double branched coverings [4],

and by Plotnick for cyclic branched coverings [ 10] that the cover is irreducible

if and only if the branching set is a prime and non split link. Gordon-Litherland

proved [ 1 ] that if a regular branched cover is irreducible, then the branching set

is prime and non split. Lozano showed [5] that a regular cover of S branched

over a fracturable prime link contains an incompressible surface of positive

genus (fracturable link is defined in §3).

In § 1, we introduce a new family of branched coverings, virtually regular

coverings, which include all regular branched coverings and also some irregular

ones.

In §2, we prove that a virtually regular cover of 51 is irreducible if and only

if the branching set is a prime and non split link, generalizing the results in [4,

10 and 1].

In §3, we study virtually regular covers of S branched over fracturable links,

generalizing results of [5].
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Through the paper we work with finite-fold coverings and in the PL-category.

The definition of virtually regular covering is given for manifolds of any dimen-

sion zi > 2. The branching set is supposed to be a submanifold of codimension

2. In §§2 and 3 we deal with closed and orientable 3-manifolds. For the standard

definitions of irreducible manifold, prime and split link, etc. (see [2 and 11]).

We say that a manifold is reducible if it is not irreducible, i.e., if there exists

some embedded 2-sphere which does not bound a 3-ball. A properly embedded

surface F in a 3-manifold is compressible if either F is a 2-sphere bounding

a 3-ball in M or there exists a disc D in M such that DnF = 3D and dD

is not contractible in F . Otherwise, F is incompressible.

1. Virtually regular coverings

Definition 1.1. A branched covering p: M —» TV is virtually regular if there

exists an unbranched covering u: M' —> M such that pou: M' —► TV is regular.

Given a covering p: M —> TV branched over Z, with monodromy

co : nx (TV - Z) —► Sn , the associated regular covering q: X —► TV is the branched

covering determined by n o co: nx(N - Z) —► S#lma), where n is the regular

representation of the group Im co. Recall that q = u o p, where u : X —> M is

a regular (branched or unbranched) covering.

Theorem 1.2. A branched covering p: M —► TV is virtually regular if and only if

the branching index is constant along the fiber over each point of the branching

set.

Proof. Suppose p: M —> N is virtually regular. Let u: M' —► M be the un-

branched covering such that pou: M' —► TV is regular. Consider a point x of

the branching set of p . Each point of (p o u)~ (x) has the same branching

index ix because p-u is regular. As u is unbranched, each point y of p~ (x)

has the same branching index as each point of u~\y), hence ix .

Conversely, suppose that the branching index of p is constant along each

fiber. Consider the associated regular covering q = uop:X—>N. Let x G TV

be a point of the branching set. The branching index is constant along q" (x),

because q is regular, and coincides with the branching index along p~ (x),

because n is injective. Therefore u is unbranched.   a

Corollary 1.3. Let p: M -+ TV be a branched covering with associated regular

covering q = uop. Then p is virtually regular if and only if u is unbranched.   G

Corollary 1.4. Let M ,N be 3-manifolds. A covering p: M —> TV branched over

a link L is virtually regular if and only if the monodromy map

co: 7t,(TV - L) —► Sn sends each meridian of Lt to a product of cycles of the

same length hi, where Li is a component of L.   a

Virtually regular coverings of 3-manifolds branched over a link L include,

among others, the locally cyclic coverings, where the monodromy map sends

1 The definition of virtually regular covering was suggested to us by J. M. Montesinos.
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each meridian of L to a cycle of length h, if h is the number of sheets of

the covering; or, equivalently, p maps p~ (L) homeomorphically onto L.

Examples of irregular locally cyclic coverings of S are given in [12]. There,

Villarreal called locally cyclic manifold a manifold that can be represented as

the cover of a locally cyclic covering of S , and investigated the problem of

which 3-manifolds are locally cyclic. Here, we look at the natural generalization

of that concept and that problem.

Definition 1.5. A 3-manifold M is a virtually regular manifold if there exists

some virtually regular covering p: M -+ S   branched over a link.

It was shown by Villarreal in [13] that there are locally cyclic manifolds that

are not cyclic (representable as cyclic branched covers of S ).

Question 1. Is there any virtually regular manifold that is not regular (repre-

sentable as regular branched cover of S3 )?

Villarreal also found examples of manifolds which are not locally cyclic [14].

Question 2. Is every (closed, orientable) 3-manifold a virtually regular mani-

fold?

2. Irreducible covers

Let r: M —► S3 be a regular covering of S3 branched along a link L.

Gordon and Litherland proved in [1] that M irreducible implies L prime.

Actually, it is easy to prove that M irreducible implies L prime and nonsplit.

The converse result ( L prime and nonsplit implies M irreducible) is proved

for cyclic branched coverings (see [4 and 10]). The following theorem provides

this converse result for any regular covering.

Theorem 2.1. Let L be a link in S and let r: M —> S be a regular covering

branched along L. If M is reducible then L is split or nonprime.

Proof. If M is reducible, there exists a 2-sphere S which does not bound a

3-ball. Then 5 is either nonseparating or S decomposes M as connected sum.

In both cases there exists a nonempty family F = {Sx, ■ ■ ■ ,Sk} of embedded

disjoint 2-spheres in M invariant under the action of the group G of covering

transformations, and such that S¡ does not bound a 3-ball for z = I, ... ,k .

(See [8, p. 480] and [10].)

For each element g of G, g(Sx) = Sx or g(Sx) n Sx = 0. Then

r\s : Sx —► F, where F is r(Sx), is a (possibly branched) regular covering

and F is an embedded surface in S . Next we prove that F is a 2-sphere

which either intersects the link L in two points or does not intersect L.

Let g be the genus of F, n the number of sheets of the covering r\s ,

2s the number of points of F n L, and h the branch index of each point of

(r\s )~l(F n L). The Hurwitz's formula [3] on Euler characteristic (note that

F is an orientable surface), gives

2 = x(Sx) = n(2-2g -2s) + 2sn/h.



210 M. T. LOZANO AND C. SAFONT

Two cases are possible:

(1) If s = 0, then 1 = zî(1 - g). This implies that g = 0, i.e., F is a

2-sphere which does not intersect L.

(2) If s > 1, then h = nh(l - g-s)+sn . As h divides zz and both of them

are positive, this equation implies n = h and I = h(l - g - s) + s. If s > I or

g > 0, this yields the following contradiction, s - I = h(s - I) + hg > s - I.

Therefore 5 = 1 and g = 0, i.e., F is a 2-sphere and F n L consists of

two points.

In the first case, the link L is split, because F divides S into two balls Bx

and B2, each of them containing part of L. For if Bi n L is empty, then Sx

bounds a 3-ball, which is not the case.

In the second case, the link L is nonprime, because F decomposes L as

connected sum of two nontrivial links Lx and L2. For if Li is trivial then

Sx bounds a 3-ball which is the cyclic covering of a ball branched along a

spanning arc.   a

For an unbranched covering u: X —► M, where X and M are orientable

3-manifolds, it is a well known and trivial fact that if X is irreducible, so

is M. The converse was proved by Meeks-Simon-Yau using minimal surfaces

[9, §7]. From this fact, Theorem 2.1 and [1], the following theorem follows.

Theorem 2.2. Let p : M —> S be a covering branched along a link L, such that

there exists a regular covering r : TV —» 5 branched along L with the property

that TV is an unbranched cover of M. Then M is irreducible if and only if L

is prime and nonsplit.   D

Corollary 2.3. Let p: M —► S3 be a virtually regular covering with branching set

L. Then M is irreducible if and only if L is prime and nonsplit.   a

Remark. A direct proof of " M irreducible implies L prime" for locally cyclic

coverings is given in [7].

Corollary 2.4 (See [10]). Let L be a link in S3. The following conditions are

equivalent:

(a) L is prime and nonsplit;

(b) all virtually regular covers of S   branched over L are irreducible;

(c) one virtually regular cover of S   branched over L is irreducible,   a

3. Fracturable links and incompressible surfaces

An arcbody [5] is a pair (A,lA), where lA is a 1-manifold properly embed-

ded in an orientable compact 3-manifold A with boundary, with the following

conditions:

(i) A — lA has incompressible boundary;

(ii) no component (C,Cn lA) of (A,lA) is homeomorphic to (D x I,

{0} x I) or (D2 x Sl, {0} x S1), where C is a connected component of A ;

(iii) every sphere of dA must intersect lA .
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A cutting disc in (A,lA) is a properly embedded disc D in A intersecting

lA transversally in exactly one interior point, and if D, together with a disc

E in dA, bounds a ball D c A, then D does not intersect lA just in a

spanning arc.

A link (S , L) is fracturable [5] if there exists a compact closed surface F

embedded in S dividing (S , L) in two arcbodies. Then F gives a fracture

of (S ,L). A fracture is minimal if F is connected and there are no cutting

discs in any of the two arcbodies of the fracture.

It is proved in [5] that every regular cover of S branched over a fracturable

and prime link contains an incompressible surface of positive genus. Here we

generalize this result to virtually regular coverings.

Lemma 3.1. Let u: X —» M be an unbranched covering where X and M are

3-manifolds. Let T be an orientable embedded closed surface in M such that

a component R of u" (T) is an incompressible surface in X of positive genus.

Then T is incompressible and has positive genus.

Proof. The restriction map u\R: R -* T is an unbranched covering, so the

genus of T is positive.

To prove that T is incompressible, consider an embedded disc D in M

such that D n T = dD. The preimage u~ (D) is a disjoint union of discs,

and the boundary of one of them, say Dx , lies on R. Then dDx bounds a

disc E in R because R is incompressible. It follows that dD is a separating

curve in T. Let Tx and T2 be the two parts of T separated by 3D. Then

u~ (T) = u~ (T\)[Ju->(dD)u~ (^2) an<* u\e: E ""■* ̂z *s a covering (for i =

1 or 2) which is a homeomorphism on the boundary. This implies that T¡ (i =

1 or 2) is a disc. Therefore T is incompressible,   a

1 7

Theorem 3.2. Let (S ,L) be a fracturable prime link and let p: M —» 5 be a

virtually regular covering branched over L. Then M contains an incompressible

surface of positive genus.

Proof. Let F be an embedded surface in S giving a minimal fracture of

(S ,L). [5, Proposition 2.1] assures that such a surface exists. We will prove

that every component of p~ (F) is an incompressible surface in M of positive

genus. Let T be one of these components. Consider the unbranched covering

u: X —> M such that r = p ou: X -+ S is regular. Then u~ (T) is a disjoint

union of components of r~ (F). Since each of these components is an incom-

pressible surface of positive genus [5, Theorem 3.1], T is incompressible and

has positive genus by Lemma 3.1.   a

The following Lemma 3.3 is a converse of [5 Theorem 3.1]. The analogous

result for regular coverings branched over 3-braids is contained in [6, Corollary

3.8]. Theorem 3.5 is the generalization to virtually regular coverings.
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1 -5

Lemma 3.3. Let L be a nonsplit link in S , and let r: TV —> S be a regular

covering branched over L. If there exists a closed embedded connected surface

F in S cutting L transv er sally, and such that a component R of r~ (F) is

incompressible, then F gives a fracture of (S ,L). Moreover, if L is prime

then this fracture is minimal.

Proof. We will prove that (A, A n L) and (B ,BC\L) are arcbodies, where A

and B are the two parts of S   bounded by F .

(i) The inclusion map iA:F-L^>A-AC\L is monic on nx : Let a

be a loop in F - L such that there exists a disc D properly embedded in

A - A n L whose boundary is a. As D does not intersect L, r~ (D) is

the union of n pairwise disjoint discs A. (i = 1, ... ,n), where zz is the

number of sheets of the covering r. For some z, 9A; is contained in R.

Since R is incompressible there exists a disc E¡ contained in R such that

dEi = <9A(. For j — I, ... ,n , there exists a covering transformation g. such

that gj(Ej) is a disc with boundary gÂdA/) = dAj. Call gj(E¡) = Ej. The set

{Ej\j = 1, ... ,zz} is a family of discs embedded in the surface r~ (F) and

they have disjoint boundaries. This means that every component of \j"=l E. is

a disc. Let C be one of these components, and consider the restriction map

r\c: C —► r(C) which is an m to 1 regular (branched) covering for some m.

Using the Hurwitz formula on Euler characteristic [3], we have

(1) I = X(C) = mX(r(C)) - a(m - I)

where a is the number of points of r(C) n L, and / is the number of points in

the preimage by r\c of any point of r(C)C\L. Then / divides m , and I =£ m .

From ( 1 ) we obtain

(2) X(r(C)) « 1+fl^-7) > 0.
m

The only possible value of a is zero. For if a > 1, x(r(C)) > 1, which is

impossible. And if a = 1, Dl)r(C) is a 2-sphere in S intersecting L in one

point, which is also impossible. Thus, a = 0 and x(r(C)) = 1 > a°d r\c is a

homeomorphism. Therefore r(C) is a disc contained in F - L with boundary

a. Hence a is contractible in F - L and the map iA is monic.

(ii) Since r is a regular branched covering, every component of r~ (F) is

the image of R by some covering transformation. As R is incompressible,

every component of r~l(F) is also incompressible. It follows that (A,A n L)
2 2 11

is not homeomorphic neither to (D  x I, {0} x /) nor to (D  x S , {0} x S ).

(iii) There are not 2-spheres in dA — L = F - L. For if F is a 2-sphere

disjoint of L, R is a 2-sphere which does not bound a 3-ball. Then L is split.

Therefore (A,AD L) and (B,B n L) are arcbodies, which proves the first

part of the theorem.

To prove that if L is prime the fracture (S , L) is minimal, we will prove

that there are not cutting-discs in (A,A(~\L) and (B,B nL). Suppose that D
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is a properly embedded disc in A or B such that D intersects transversally L

in one interior point of D. Let E be a component of r~ (D) and r\E : E —► D

is the cyclic covering (h to 1) of D branched along the point DDL. The

boundary of E lies in the incompressible surface r~ (F). Thus dE bounds

a disc E' in r~ (F). A similar argument of the above one, using Hurwitz's

formula, proves that E' projects to a disc C intersecting transversally L in one

point, and CUD is a 2-sphere cutting L in two points. Since L is prime, one

of the two balls bounded by CöD intersects L in one spanning arc. Therefore

D is not a cutting disc,   a

Lemma 3.4. Let u: X —> M be an unbranched covering, where X and M are

orientable 3-manifolds. Let T be an orientable incompressible embedded surface

in M of positive genus, then each component of u~l(T) is an incompressible

surface in X of positive genus.

Proof. Let R be a connected component of u~ (T). The restriction map

u\R: R —► T is a covering, so the genus of R is greater than or equal to the

genus of T, hence positive.

Since T is a 2-sided incompressible surface in M, z'r# is a monomorphism

[2, Corollary 6.2], where iT#: nx(T ,u(x0)) —► nx(M ,u(x0)), x0 gR, is induced

by the inclusion iT: T —> M. We know that u\m and u#, and hence iT# o

u\m = u#oim are monomorphisms, where iR#: nx(R,x0) -* nx(X,xQ) is

induced by the inclusion iR: i? —> X. Therefore iR# is also a monomorphism,

and thus R is incompressible in X.     a

Theorem 3.5. Let p: M —► S3 be a virtually regular covering branched along a

nonsplit link L. If there exists an embedded connected closed surface F in S

cutting L transversally, and such that a component R of p~ (F) is incompress-

ible, then (S3 ,L) is fracturable with fracture F. And if L is prime, then F is

a minimal fracture of (S ,L).

Proof. Consider the unbranched covering u: X —► M, such that pou: X —> 5

is regular.  By Lemma 3.4, every component of u~ (R) is an incompressible

surface in X, and it is also a component of r~ (F). Then by Theorem 3.3, it

follows the thesis.     G

Remark. A direct proof of Theorems 3.2 and 3.5 for locally cyclic coverings is

given in [7].

Corollary 3.6. All virtually regular covers of S3 branched over a fracturable and

nonsplit link are Haken manifolds.
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