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Abstract. In this paper we first determine minimal models of nilmanifolds as-

sociated with given rational nilpotent Lie algebras. Then we study some proper-

ties of nilmanifolds through their associated Lie algebras and minimal models.

In particular, we will see that a minimal model of a nilmanifold is formal if and

only if it is a torus, and thus a non-toral nilmanifold has no complex structure

which is birationally isomorphic to a Kahler manifold.

0. Introduction

A nilmanifold is a compact homogeneous space of nilpotent Lie group. The

nilmanifolds are known to give counterexamples relating to Kahler structure:

non-Kähler almost Kahler manifolds, non-Kähler symplectic manifolds, com-

pact complex manifolds of which the Frölicher spectral sequence does not de-

generate at El, and so forth.

There is a series of papers in this area starting with Thurston's paper [12] on

non-Kähler symplectic manifolds (cf. [1, 4, 5, 7, 10]).

In this paper, instead of some specific nilmanifolds, we discuss general nil-

manifolds in terms of their associated rational nilpotent Lie algebras. This way

clarifies as well as generalizes the arguments in the related problems; for in-

stance, Kodaira-Thurston's first example of non-Kähler symplectic manifold

can be characterized as a 4-dimensional nilmanifold with its associated nilpo-

tent Lie algebra g, where g has a basis {X{ ,X2,X3,X4} for which the only

nonzero bracket multiplication is [Xx, X2] = —X3.

In §1 we determine explicitly minimal models of nilmanifolds associated

with given rational nilpotent Lie algebras. In §2 it will be shown that a minimal

model of a nilmanifold is formal if and only if it is a torus. Applying a result of

Deligne, Griffiths, Morgan, and Sullivan [6], we see that a non-toral nilmanifold

has no birational Kahler structure (see §2 for definition). In §3 we briefly discuss

symplectic structures of nilmanifolds through their associated Lie algebras and
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minimal models.   In particular, we see that a non-toral nilmanifold has no

invariant symplectic structure.

1. Minimal models of nilmanifolds

Following Sullivan (cf. [6]),we briefly review AT-minimal models for com-

mutative differential graded algebras over K, where K is Q or R.

Let A be a commutative differential graded algebra over K. This means

that A is a graded algebra over K :

A*@Al

with the commutativity:

ab = (-\)pqba       (a e Ap ,b e Aq);

and an antiderivation d of degree 1 :

d2 = 0,       d(ab) = (da)b + (-l)pa(db)       (a£ Ap ,b £ Aq).

Let B be another differential graded algebra over K. 77 is a Hirsch extension

of degree n of A , if B is of the following form:

B = A ® An(xx ,x2, ... ,xk),   degx- = n, dxi £ A for i =

1,2,...,k

where An(xx, ... ,xk) is the exterior algebra generated by xx,x2, ... ,xk.

A commutative differential graded algebra A over K is minimal if A sat-

isfies the following conditions:

(1) A = U,>o^; > where AQ = K, and Ai+l is a Hirsch extension of A¡ for

/>0.

(2) dx e A+ ■ A+ for all x £ A , where A+ = 0(>1 A1.

A commutative differential graded algebra s/ over K is a K-minimal model

for A , if s/ is minimal and there exists a morphism 0 of differential graded

algebras from sf to A such that 4> induces an isomorphism on cohomology.

A K-minimal model ^ of a differentiable manifold A/ is a 7C-minimal

model for the K-De Rham complex e* (M) of Af. The Q-De Rham complex

is defined by Q-polynomial forms instead of usual smooth forms (cf. [2, 6]).

Now, let M be a nilmanifold. According to Malcev [9], M can be written as

G/T, where G is a simply connected nilpotent Lie group and Y is a uniform

discrete subgroup of G. Let a be the Lie algebra of G (the vector space of all

(r-right invariant vector fields on G ). Malcev proved the following fundamental

theorem on nilmanifolds: g has a basis for which the structure constants are all

rational; and conversely for every nilpotent Lie algebra g with rational constants

of structure, there exists a nilmanifold M with g as its associated Lie algebra.
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Let us consider the following commutative differential graded algebras

over R:

C(M) = 0 Cq(M), Cq(M) = {w : w is a T-right invariant q-forra on G},

C(G) = 0 Cq(G), Cq(G) = {w:w\sa G-right invariant tf-form on G},

C(g) - 0 Cq(g), Cq(g) - {/: / is a ^-linear alternating function on g},

q>0

where C(M) can be identified with the R-De Rham complex e*(M).

According to the theorem of Koszul (cf. [3]), there exists a canonical iso-

morphism from H*(g) to H*(G). Let k = dimHX(g) — dim(gl[g,g]). Since

g is a nilpotent Lie algebra over Q, there exists a basis {XX,X2, ... ,XJ for

which [0,0] - (Xk+X,... ,Xm) and [X^Xß = -¿Zj<papijXp(i < j), where

m = dim g, m > k > 2, and apij £ Q.

Let wx,w2, ... ,wm be the Maurer-Cartan forms on G (G-right invariant

1-forms) which correspond to XX,X2, ... ,Xm respectively. Then the forms

wx,w2, ... , wm satisfy the following formulas:

dwn — y^ a„¡:W,. A tu, ;       where dwn = 0   for p < k,p      ¿__¿   pi¡   i       j ' p f —    i

(1.1) i<j<P
and dwp ^0   for p > k.

Since C (G) consists of constant functions on G, none of wl,w2, ... , wm

are exact in C(G). Hence an R-minimal model JÍ for C(G) is the following:

(1.2) ^=^®R,

where JÍ = Ax (xx, x2, ... , xj is the commutative differential graded algebra

over Q, generated by xx,x2, ... ,xm,  degx; == 1 (/ = I, ... ,m), and the

antiderivation d on JK is uniquely determined by (1.1).   Remark that the

condition, d2 = 0, follows from the Jacobi identity in 0 (cf. [3]).

The Q-minimal differential graded algebra Jf can be written inductively as

follows:

•*=-*m>-*s+i =^®Ai<*J+i)j dxs+l e^l-^ls,dxs+x¿0

for s (m - 1 > s > k) , and Jfk = Ax {xx, x2, ... , xk), dxx =

dx2 = ■■■ = dxk = 0,    k > 2.

According to the theorem of Nomizu [11], the canonical morphism of dif-

ferential graded algebras from C(G) to C(M) induces an isomorphism from

77* (G) to H*(M). Therefore, J? is an R-minimal model of M.
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Remark jf is actually a Q-minimal model of M (cf. [6]). Conversely, it can

be seen that for a Q-minimal differential graded algebra Jf of the form above

there exists a nilmanifold M with JÍ as its Q-minimal model.

2. Formality of minimal model Jf

A minimal differential graded algebra A over K is formal if there exists

a morphism y/ of differential graded algebras from A to H*(A;K) such

that y/ induces the identity on cohomology, with the antiderivation d = 0

on H*(A;K).

Let jf be a Q-minimal model of a nilmanifold M of dimension m .

Lemma 1.  íL#w_1 = 0, and thus dim77m(„#;Q) = 1.

Proof. Since {x, x2 ■ ■■ x ■ ■ ■ xm } (q = 1,2, ... , m) forms a basis of ^#m~ ,

it is sufficient to show that d(xxx2 ■ ■ ■ x ■ ■ ■ xm) = 0 for q = 1,2, ... , m . But

this is obvious because dxs+ x£J?s-^s for s — k ,k... ,m-\ and i/x5 = 0

for s=l, ... ,k (k>2).

Theorem 1. Jf is formal if and only if M is a torus.

Proof. A nilmanifold M is a torus if and only if G is Abelian; this is because

a simply connected Abelian Lie group is isomorphic to Rm , and any discrete

subgroup of Rm is a lattice. G is Abelian if and only if its Lie algebra g is

Abelian, which is the case k = m , where k = dim 77' (Jf ; Q) = dim 77 (M;Q).

It is therefore sufficient to show that Jf is formal if and only if k = m .

Suppose that k < m and JÍ is formal. Then there exists a morphism y/

of differential graded algebras from -# to 77* (J[ ; Q) which induces the iden-

tity on cohomology. Let us consider the restriction y/ of y/ to JH . Since y/

induces the identity on cohomology, yi maps every closed form of Jt~ to its co-

homology class. In particular, y/ (xq) = [xq] in H (Jf;Q) for q = 1,2... ,/c.

Since {[xq]} (q = 1,2, ... ,k) forms a basis of Hl(^;Q), Jf is gener-

ated by xx,x2, ... ,xk and a basis {yk+l, ■■■ ,ym} of Ker^ . Now since

X\x2 "xm = axx ■ ■ -xkyk+x ■ ■ -ym for some nonzero scalar a, yi(xxx2 ■ ■ -xm) =

0. On the other hand, since xxx2- ■ -xm is closed y/(xxx2 ■ ■ ■ xm) = [xxx2 ■■■ xm].

But this contradicts Lemma 1. Hence, ^# is not formal unless k = m .

A compact complex manifold is birational Kahler if it is birationally isomor-

phic to a Kahler manifold. The birational Kahler manifold can be blown up to a

Kahler manifold. According to the theorem of Deligne, Griffiths, Morgan, and

Sullivan (cf. [6]), a 7i-minimal model of such a compact complex manifold is

formal where K is Q or R. Therefore we obtain the following result.

Corollary. An even-dimensional nilmanifold has no birational Kahler structure

unless it is a torus.
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Example 1. Let us consider a nilmanifold of dimension (2m + 2) with its as-

sociated Lie algebra 0, where m > 1 and 0 has a basis

{Xx,...,Xm,Yx,...,Ym,Z,W}

for which the bracket multiplication of 0 is defined as follows:

(2.1) [Xi, Y¡] = -Z (i = 1, ... , m),       and all other brackets are 0.

An almost complex structure 7 on M is defined by

JX, = Y.,        JY. = -X.,
(2.2) '

JZ = W,       and   JW =-Z ,       where i = 1,... ,m.

The Nijenhuis tensor TV of this almost complex structure J can be easily seen

to vanish, where N(X ,Y) = [X,Y] + J[JX ,Y] + J[X,JY]- [JX ,JY]. Thus

J defines a complex structure on M.

The first Betti number of M is 2m - 1 . Remark that a complex surface

with trivial canonical bundle in class VI of Kodaira's classification of complex

surfaces is a nilmanifold of the case m = 1 in this example (cf. [8]).

Example 2. Let M be a nilmanifold of dimension (2m + 2) with its associated

Lie algebra 0, where m > 2 and 0 has a basis {Xx, ... ,Xm,Yx, ... ,Ym,

Z, W} for which the bracket multiplication of 0 is defined as follows:

[Xi,Yi] = -Z(i=\,...,s),

[Xt,Y¡] = -W (i = s + 1, ... ,m),        \<s<m,

and all other brackets are 0.

The almost complex structure J on M defined by (2.2) is integrable and thus

defines a complex structure on M. The first Betti number of M is 2m ; fur-

thermore, the odd-dimensional Betti numbers are all even.

Remark. A complex nilmanifold is, by definition, a nilmanifold of the form

G/T, where G is a simply connected complex nilpotent Lie group and Y

is a uniform discrete subgroup of G. The examples above are not complex

nilmanifolds: Suppose that there exists a complex structure 7 on g. Then

[Xx ,JYX\- J[XX, Yx] = -JZ . Since [Xx, 0] c (Z), it follows that JZ = aZ

for some real scalar a. But since J  = -1, this is not possible.

3. Symplectic structures of nilmanifolds

Let M = G/Y be a nilmanifold of dimension m = 2n with its R-minimal

model s£, where G is a simply connected nilpotent Lie group and T is a

uniform discrete subgroup of G. The associated morphism <f> of differential

graded algebras from Jf to e*(M) is uniquely determined by <t>(xt) — w¡ (i =

1,2, ... ,m), where wx ,w2, ... ,wm are the 1-forms on M defined by the

Maurer-Cartan forms on G. Since Y is a discrete subgroup of G, wx A w2 A

■ ■ ■ A wm defines a volume element of M. In particular M is orientable.

We say that Jf has a symplectic structure if it has a symplectic form to,

closed 2-form such that of ^ 0.



70 KEIZO HASEGAWA

Lemma 2. M has a symplectic structure if and only if JK has a sym-

plectic structure.

Proof. Suppose that M has a symplectic structure. Then there exists a closed

2-form Q on M such that Q" is a volume element of M. Let w be a closed

2-form of Jf such that [co] corresponds to [Q] by the isomorphism from

H*{Jt) to H*(M). Then clearly [co]n ¿ 0 and thus co" f 0. Conversely, if

Jf has a symplectic form co, then Q = <f>(co) is a symplectic form on M. This

is because co" — axxx2 ■ ■ -xja ^ 0) and thus Çl" = 4>(co") = awxAw2A- ■ Atum

(a volume element of M).

This lemma gives us a simple way to see if a given nilmanifold has a symplec-

tic structure. For instance, let M be a nilmanifold with its associated nilpotent

Lie algebra 0, where g has a basis {X{, X2, X3, X4} for which the only nonzero

bracket multiplication is [Xx ,X2] — -X3 (Kodaira-Thurston's example). Then

by the result of § 1, using the Maurer-Cartan's formula, an R-minimal model

Jf is the following:

J? = A,(xx ,x2,x3,x4),       dxx = dx2 = dx4 = 0,       dx} = xxx2.

Clearly co = xxx3 +x2x4 is a symplectic form of Jf. Similarly we can construct

many examples of symplectic nilmanifolds. However, concerning invariant sym-

plectic structures of nilmanifolds we have the following result.

Theorem 2. An even-dimensional nilmanifold M has no invariant symplectic

structure unless M is a torus.

Proof. By a G-invariant form on M is meant a G-left invariant form on M,

which can be identified with a G-left and T-right invariant form on G. Ac-

cording to a result of Nomizu [11], a G-left and T-right invariant form on G

is a G-left and G-right invariant form on G. Suppose that M has an invari-

ant symplectic form Q. Considering Q as an element of C(G), let / be

the element of C(g) corresponding to Q by the canonical isomorphism from

C(G) to C(g), where 0 is the Lie algebra of G. Since / is closed, for any

XX,X2,X3 of 0, f([Xx,X2],X3) + f([X2,X3],Xx) + f([X3,Xx],X2) = 0;but
since / is invariant, f([X2,X3],Xx) + f([X3,Xx],X2) = 0. Hence, for any

XX,X2,X3 of 0, f([Xx ,X2],X3) = 0. The nondegeneracy of / yields that

[fl j 9] — 0 > that is, 0 is Abelian. By the same argument as in Theorem 1, this

is the case that M is a torus.

Note. I learned from Professor A. Gray that Cordero, Fernández and Gray

showed, in their paper in preparation, the existence of a nonzero Massey product

for a non-toral nilmanifold. I also learned that there is quite recently a preprint

by Benson and Gordon (to appear in Topology) in which they showed that a

non-toral nilmanifold has no Kahler structure.
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