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Abstract. The structure of rings such that each of its homomorphic images

has the property that each cyclic right module over it is essentially embeddable

in a direct summand is determined. Such rings are precisely (i) right uniserial

rings, (ii) n x n matrix rings over two-sided uniserial rings with n > 1 , or (iii)

sums of rings of the types (i) and (ii).

1. Introduction

In this paper we study rings R with the following property (P): For all homo-

morphic images R of R, every cyclic right ^-module is essentially embeddable

in a direct summand of R. Our results generalize the celebrated Wedderburn-

Artin theorem which characterizes rings R such that over all the homomorphic

images R the cyclic modules are isomorphic to direct summands of R . Exam-

ples of rings satisfying (P) include semisimple artinian rings and right uniserial

rings. Indeed we show that a ring R has property (P) if and only if R is a

direct sum of right uniserial rings and matrix rings over right self-injective right

uniserial rings if and only if R is a semiperfect ring whose cyclic right modules

are essentially embeddable in direct summands (Theorem 3.5). Throughout this

paper, all rings have 1 and all modules are right unital, unless otherwise stated.

By a right (left) uniserial ring, we mean a ring having a unique composition se-

ries of right (left) ideals. A ring which is both right and left uniserial will simply

be called uniserial. A right uniserial ring is uniserial iff it is right self-injective.

For any module M ,E(M),Soc(M) and J(M) will denote, respectively, the

injective hull, the socle, and the Jacobson radical of M.

2. Preliminary results

Throughout this section, we assume that R is a ring satisfying property (P).

2.1. Lemma.  R is a semiperfect ring.
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Proof. Let N = prime radical of R under our hypothesis, each right ideal

of R/N is an annihilator right ideal and hence R is semiperfect [3, p. 204,

Exercise 24.3(d)-(e)].   D

Since R is semiperfect, R has a complete orthogonal set ex, ... ,en of

idempotents such that, for all i, e¡Re¡ is a local ring. In the lemmas which

follow the decomposition R — exR © • ■ • © enR will be frequently used. For

R modules A and B, the notation A <—*' B shall mean that A is essentially

embeddable in B.

2.2. Lemma. For R = ex R® ■ ■ ■ © enR, the following are true:

(i)   e¡R is uniform for all i,
(ii)   Soc R is essential in R, and

(iii)   R has Goldie dimension n .

Proof. Let S = {Sl.Sk} be an irreduntant set of representatives for the

simple i?-modules and let P = {exR, ... ,ekR} be a complete set of represen-

tatives for the projective indecomposable R modules.

Since every simple module S is cyclic, it is essentially embeddable in eR

for some idempotent e G R. Clearly eR is indecomposable. Thus we can

define a function /: S —► P by f(St) = e.R where St •-*' e.R. The function /

must be one to one, hence onto. It easily follows that each e¡R (j = I, ... ,n)

contains an essential simple submodule T¡ and, therefore, each e.R is uni-

form. Also, Tx® ■ ■■ ®Tn = Soc R is essential in R. Thus R has Goldie

dimension n.   D

2.3. Lemma.  R is right artinian.

Proof. Clearly each cyclic iv-module has nonzero socle. Thus, R is left perfect

because R is semiperfect [2]. Furthermore, since J(R)/(J(R)) is completely

reducible, J(R)/(J(R))2 is embeddable in SocR. This yields J(R)/(J(R))2

is finitely generated and so R is right artinian [1, p. 322].   G

2.4. Lemma. For i ^ j, let e¡R and e¡R be indecomposable summands of R.

Then, either e¡R is isomorphic to e.R or HornR(etR,e.R) = 0.

Proof. Suppose a: e¡R —► ei? is not zero, then er/c/Kerrj is embeddable in

e.R. Since e-R is uniform (Lemma 2.2), such an embedding must be essential.

This implies E(ejR/Kera) = E(ejR). Also, since R satisfies property (P) and

it has Goldie dimension n , E(R/ Kerrr) = E(R). Let R = ex R® ■ ■■ ® enR .

Then

R/ Ker a = exR®---® etRI Ker a @ ■ • • ® e¡R ® ■ ■ ■ ® enR,

which yields

( 1) E(ex/?)©•••© E(ejR) © • ■ • © E(ejR) © • • • © E(enR)

= E(R/ Ker a) = E(R) S E(ex /?)©■•■© E(eiR) © ■ ■ ■ © E(e}R) © • • • © E(enR).
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Since ekR is uniform for all k, E(ekR) has local endomorphism ring.

Hence from (1) E(ejR) = E(ejR). But this implies that E(e¡R) and E(ejR)

contain isomorphic copies of the same simple submodule S and, therefore,

e¡R and e.R both contain essentially a copy of 5. This implies that e¡R is

isomorphic to e,R.   D

2.5. Lemma.  R is a direct sum of matrix rings over local rings.

Proof. Let [e¡R] = YLe,R > where the J2 runs over all J f°r which e.R = e¡R.

Renumbering if necessary we may write

R = [exR]@-®[ekR]

where k < n . By Lemma 2.4, [exR] is an ideal in R and so

R = Mn](exRex)®---®Mnk(ekRek)

where ni is the number of summands in [e¡R].   a

Next we proceed to show that each local ring e¡Re¡ is indeed right uniserial.

2.6. Lemma. If R = Sn is the nxn matrix ring over a local ring S, then S is

right uniserial.

Proof. Write R — exxR ® ■■■ ® ennR, where exl,e22, ... ,enn are the usual

matrix units. Notice that each e¡¡R is indecomposable since S is local.

Consider I c exxR. Then R/I = exxR/I x e22R x ■ ■■ x ennR is essentially

embeddable in R because the Goldie dimension of R is n . Thus

E(R/I) = E(R)

and so

E(exxR/I) x E(e22R) x • ■ • x E(ennR) = E(exxR) x E(e22R) x--x E(ennR).

Since euR is uniform (Lemma 2.2), E(euR) is also uniform. Therefore,

by Azumaya diagram, E(exxR/I) = E(exxR). This implies exxR/I is uniform.

It follows that the submodules of exxR are linearly ordered. We show now

that S = ex,Rex, is right uniserial. Let A,B be right ideals of ex,Rex, . Then

AexxR c exxR and BexxR c exxR and so either AexxR c BexxR or BexxR c

AexxR. But then either A = AexxRexx c BexxRexx = B or B = BexxRexx c

Aex, Rex, = A, proving our assertion.     □

In the next section we shall obtain a characterization of rings with

property (P).

2.7. Remark. Note that in the proof of Lemmas 2.2-2.6 we have only used

that R is a semiperfect ring each of whose cyclic /^-modules is essentially

embeddable in a direct summand of R.
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3. Main results

We begin with

3.1. Theorem. Let R be a ring with property (P). Then R is a direct sum of

matrix rings over right uniserial rings.

Proof. The proof follows from Lemmas 2.5, 2.6, 2.7 and the fact that ring direct

summands of a ring with property (P) inherit the property (P).   D

It is obvious that right uniserial rings have property (P). In what follows we

will concentrate on showing that for a right uniserial ring S, the matrix ring

R = Sn (n > 1) satisfies property (P) if and only if S is right self-injective. For

the sake of our discussion we define property (Q) for modules. We say that an

Ä-module M has property (Q) if each factor of M is essentially embeddable

in a direct summand of M.

3.2. Lemma. The nxn matrix ring over R has property (Q) as a module over

itself if and only if the R-module R     has property (Q).

Proof. Given a category isomorphism F = ^s —► y$T between the categories

of right modules of two rings 5 and T, it is obvious that a module M G Jís

satisfies (Q) if and only if F(M) G JÍT satisfies (Q). Our lemma follows from

the fact that if e{, G Rn is the usual matrix unit then R:"' g Jír corresponds

to Rn G JÍR   under the category isomorphism.

-®RnRnen:JfRn->JrR.   D

3.3. Lemma. If the R-module R has property (Q) where R is right uniserial

and n > 1, then R is right self-injective.

Proof. Let R be a right uniserial ring which is not right self-injective. Then

there exists s G R such that xs & Rx. Without loss of generality, we may

assume that 5 is invertible. Define I = (x, - xs,0,0, ... ,0)R ç Rw. We

claim that R(n)¡I is not embeddable in i?(n). Notice that both exR and e2R

are isomorphic to R as .R-modules, where ex = ( 1,0,0, ... , 0) and e2 =

(0,1,0, ... ,0). Also, since exRne2R = exxRx =e2xR. If y/: Rin)/1 -* R(n)

were an embedding of R^/I into R , and if y/(Sx) = (ax,a2, ... ,an) and

y/(ê2) = (bx,b2, ... ,bn), then there must exist i,j such that a¡ invertible

and bj invertible.   However,  y/(exx) = (axx,a2x, ... ,anx) and y/(e2xs) =

(bxxs,b2xs, ... ,bnxs), which implies that a.x = b-xs . Hence bj a.x = xs,

contradicting our choice of 5 . So we have shown that the Ä-module R{n) does

not satisfy (Q).   D

3.4. Lemma. If R is a right self-injective right uniserial ring, then Rn satisfies

property (P).

Proof. Since R is self-injective, it follows that Rn is also self-injective. There-

fore. Rn satisfies property (Q) as a module over itself if and only if the in-

jeciive hu!! of an} cyclic i?n-module is embeddable in Rn . Let exx G Rn be
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the usual matrix unit and let I be a right ideal of Rn . Since Rn —» Rn/I —►

0 is exact,   (Rn ®Ä  ^„en)Ä —► (RJI ®R  Rn^n)R —> 0 is also exact.   But

(*„ ®*„ *„*.i)* s"(Vii)ji = ^ Therefore, N = RJI ®R¡¡ *„*„ is a

homomorphic image of J? . Thus TV is an extension of a sum of k cyclic

jR-modules, (k < n) [5, Lemma 1.16]. But then, since exxRn corresponds to

R under Yion\R(Rnexx,_), the inverse of ( _ ®R R„eu), it follows that there

exist k quotients Qx, ... ,Qk, of exxRn such that Q, © • • ■ © Qk «-V RJI.

Now, E(Qi) ->' exxRn for all z. Hence £(*„//) = E(QX) © ■ • ■ © £«2fc) «^'
(k)

(exxRJ ' <-+ Rn , proving that E(Rn/I) is embeddable in Rn. Since each ho-

momorphic image of R is again right self-injective right uniserial, it follows

that Rn satisfies property (P).   D

Our results are summarized in the following theorem.

3.5. Theorem. A ring R satisfies (P) if and only if R is a direct sum of right

uniserial rings and matrix rings over right self-injective right uniserial rings if

and only if R is a semiperfect ring whose cyclics are essentially embeddable in

a direct summand of R.

Proof. The proof follows from Theorem 3.1 and Lemmas 3.2, 3.3 and 3.4 and

Remark 2.7.   a
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