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DEGREES OF IRREDUCIBLE CHARACTERS

AND NORMAL p-COMPLEMENTS

YA. G. BERKOVICH

(Communicated by Warren J. Wong)

Abstract. John Täte [1] proved that if P e Sylp(G), H is a normal subgroup

of a finite group G and PCiH<<S>(P) (<t>(G) is the Frattini subgroup of G)

then H has a normal p-complement. We prove in this note that Tate's theorem

has nice character-theoretic applications.

Theorem. Let B be the intersection of the kernels of all nonlinear irreducible

characters of G with p-degree. Then B C\G' C\P ç p' where P £ Syl (G).

Also, B has a normal p-complement.

Proof. We suppose that P0 = B n G' n P ^ P'. Let Lin(P) be the set of

all linear characters of P, and let X £ Lin(P) satisfy P0 ^ ker A. Then the

induced character XG has degree \G: P\ ^ 0 (modp). Let % be an irreducible

component of A . Then P0 ^ ker^ by Frobenius reciprocity. So p divides

X(l) for all nonlinear irreducible components x of A   .   Since p does not
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divide X ( 1 ), the character X has a linear component X . Then Xp = X.

Thus
P n ker/ = ker X £P0^P0$ ker Xo.

Since G' < ker A , we have

BnG' nP = P0$G',

which is a contradiction.

The last assertion follows from

Lemma. Let P e Sylp(G) and let H < G. If 77 n G' n P < P', then H has a

normal p-complement.

Proof. Let Of(G) be the intersection of all N <G suchthat G/N isa p-group.

Then &(&) is characteristic in G. So (f(H) < G and

6^(77) n G' n P < 77 n G' n P < p'.
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Since 0e (H) has no normal subgroup of index p , we have Op(H)nP < G'.

Hence

Op(H)nG'nP = Op(H)nP

and 77 has a normal p-complement by Tate's theorem.

Corollary (J. G. Thompson [2]). Suppose that a prime p divides #(1) for all

nonlinear irreducible characters x of G. Then G has a normal p-complement.

This follows from Theorem, since B — G, where B is defined in the theorem.

Remark. We prove that Tate's theorem for p > 2 is a corollary to the following

well-known result of J. G. Thompson [3]:

Let p > 2, let P e Syl (G), and, for every characteristic subgroup P0 of

P, P0 ^ 1, the normalizer NG(P0) has a normal p-complement. Then G has

a normal p-complement.

Suppose that 77 < G, p>2, P e Sylp(G), and 7J, = 77 n P < <&(P).

Suppose that 77 has no normal p-complement. By Thompson's theorem, there

exists a characteristic subgroup P0 of 7>1, T^ ^ 1, such that NH(P0) has no

normal p-complement, and let 7>0 have a maximal order among all subgroups

with this property. Since P{ < P, we have P0 < P. So P < NG(PQ). Since

NH(P0) < AG(7J0), the subgroup NG(PQ) has no normal p-complement. With-

out loss of generality we may assume that PH = G. Then

NG(P0) = P(H n NG(P0)) = PNH(P0) = NH(P0)P

by modular law. Since NG(P0) has no normal p-complement we may assume

without loss that NG(PQ) = G. So P0 < G. Suppose that P0 £ <D(G). Then

there exists such a maximal subgroup M of G that P0Af = G. Then 7> =

P0(Pn A/) by modular law. So PnM = P (since 7^ < Q>(P)), and 7^ < M,

M = P0M = G, a contradiction. Hence P0 < O(G). By Thompson's theorem

G/P0 has a normal p-complement T/PQ by virtue of a maximal choice of T'q .

If K is a p'-Hall subgroup of T (Schur-Zassenhaus), then

G = NG(K)T = NG(K)KP0 = NG(K)P0

(Schur-Zassenhaus and Frattini). Since 7^ < 4>(G), we have NG(K) = G and

K < G. Obviously, AT is a normal p-complement of G.

Further applications of a generalization of Tate's theorem (Roquette's theo-

rem [4]) can be found in Chapter 6 of the book [5].
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