DEGREES OF IRREDUCIBLE CHARACTERS AND NORMAL *p*-COMPLEMENTS

YA. G. BERKOVICH

(Communicated by Warren J. Wong)

ABSTRACT. John Tate [1] proved that if $P \in Syl_p(G)$, H is a normal subgroup of a finite group G and $P \cap H \leq \Phi(P)$ ($\Phi(G)$ is the Frattini subgroup of G) then H has a normal *p*-complement. We prove in this note that Tate's theorem has nice character-theoretic applications.

Theorem. Let B be the intersection of the kernels of all nonlinear irreducible characters of G with p'-degree. Then $B \cap G' \cap P \subseteq P'$ where $P \in Syl_p(G)$. Also, B has a normal p-complement.

Proof. We suppose that $P_0 = B \cap G' \cap P \nleq P'$. Let $\operatorname{Lin}(P)$ be the set of all linear characters of P, and let $\lambda \in \operatorname{Lin}(P)$ satisfy $P_0 \nleq \ker \lambda$. Then the induced character λ^G has degree $|G: P| \not\equiv 0 \pmod{p}$. Let χ be an irreducible component of λ^G . Then $P_0 \nleq \ker \chi$ by Frobenius reciprocity. So p divides $\chi(1)$ for all nonlinear irreducible components χ of λ^G . Since p does not divide $\lambda^G(1)$, the character λ^G has a linear component λ^0 . Then $\lambda_P^0 = \lambda$. Thus

$$P \cap \ker \lambda^0 = \ker \lambda \ngeq P_0 \Rightarrow P_0 \nleq \ker \lambda^0.$$

Since $G' \leq \ker \lambda^0$, we have

$$B \cap G' \cap P = P_0 \nleq G',$$

which is a contradiction.

The last assertion follows from

Lemma. Let $P \in Syl_p(G)$ and let $H \leq G$. If $H \cap G' \cap P \leq P'$, then H has a normal p-complement.

Proof. Let $O^p(G)$ be the intersection of all $N \leq G$ such that G/N is a *p*-group. Then $O^p(G)$ is characteristic in G. So $O^p(H) \leq G$ and

$$\mathcal{O}^{P}(H) \cap G' \cap P \leq H \cap G' \cap P \leq P'.$$

1980 Mathematics Subject Classification (1985 Revision). Primary 20C15, 20D20.

In memory of Professor Samuil Davidovich Berman (Jan. 3, 1922-Feb. 18, 1987).

©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

Received by the editors April 14, 1988 and, in revised form, July 19, 1988.

Since $O^p(H)$ has no normal subgroup of index p, we have $O^p(H) \cap P \leq G'$. Hence

$$O^{p}(H) \cap G' \cap P = O^{p}(H) \cap P$$

and H has a normal p-complement by Tate's theorem.

Corollary (J. G. Thompson [2]). Suppose that a prime p divides $\chi(1)$ for all nonlinear irreducible characters χ of G. Then G has a normal p-complement.

This follows from Theorem, since B = G, where B is defined in the theorem.

Remark. We prove that Tate's theorem for p > 2 is a corollary to the following well-known result of J. G. Thompson [3]:

Let p > 2, let $P \in Syl_p(G)$, and, for every characteristic subgroup P_0 of P, $P_0 \neq 1$, the normalizer $N_G(P_0)$ has a normal *p*-complement. Then G has a normal *p*-complement.

Suppose that $H \leq G$, p > 2, $P \in \text{Syl}_p(G)$, and $P_1 = H \cap P \leq \Phi(P)$. Suppose that H has no normal *p*-complement. By Thompson's theorem, there exists a characteristic subgroup P_0 of P_1 , $P_0 \neq 1$, such that $N_H(P_0)$ has no normal *p*-complement, and let P_0 have a maximal order among all subgroups with this property. Since $P_1 \leq P$, we have $P_0 \leq P$. So $P < N_G(P_0)$. Since $N_H(P_0) \leq N_G(P_0)$, the subgroup $N_G(P_0)$ has no normal *p*-complement. Without loss of generality we may assume that PH = G. Then

$$N_G(P_0) = P(H \cap N_G(P_0)) = PN_H(P_0) = N_H(P_0)P$$

by modular law. Since $N_G(P_0)$ has no normal *p*-complement we may assume without loss that $N_G(P_0) = G$. So $P_0 \trianglelefteq G$. Suppose that $P_0 \nleq \Phi(G)$. Then there exists such a maximal subgroup M of G that $P_0M = G$. Then $P = P_0(P \cap M)$ by modular law. So $P \cap M = P$ (since $P_0 \le \Phi(P)$), and $P_0 \le M$, $M = P_0M = G$, a contradiction. Hence $P_0 \le \Phi(G)$. By Thompson's theorem G/P_0 has a normal *p*-complement T/P_0 by virtue of a maximal choice of P_0 . If K is a p'-Hall subgroup of T (Schur-Zassenhaus), then

$$G = N_G(K)T = N_G(K)KP_0 = N_G(K)P_0$$

(Schur-Zassenhaus and Frattini). Since $P_0 \leq \Phi(G)$, we have $N_G(K) = G$ and $K \leq G$. Obviously, K is a normal p-complement of G.

Further applications of a generalization of Tate's theorem (Roquette's theorem [4]) can be found in Chapter 6 of the book [5].

ACKNOWLEDGMENT

The author thanks the referee who suggested a re-statement of the theorem.

References

- 1. J. Tate, Nilpotent quotient groups, Topology 3 (1964), 109-111.
- 2. J. G. Thompson, Normal p-complements and irreducible characters, J. Algebra 14 (1970), 129-134.

- 3. J. G. Thompson, Normal p-complements for finite groups, Math. Z. 72 (1960), 332-354.
- 4. P. Roquette, Über die Existenz von Hall-Komplementen in endlichen Gruppen, J. Algebra 1 (1964), 342-346.
- 5. Ya. G. Berkovich and E. M. Zhmud', Characters of finite groups, Part II (to appear).

PROSP. ENGELS III, APT. 18, 344006 ROSTOV-ON-DON, USSR