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Abstract. We prove that the class of all locally finite-dimensional TychonofT

spaces and other related classes have universal elements.

1. Introduction and definitions

In this paper all spaces are at least TychonofT, x denotes an infinite cardinal,

N the set of positive integers, / the unit interval [0, 1], wX and ßX the

weight and Stone-Cech compactification of a topological space A, respectively,

and dim A the covering dimension of A defined in terms of cozero covers.

For standard results and notation in General Topology and Dimension Theory

we refer to [5, 6, 12]. A space A is called locally finite dimensional if it has

an open cover {Gx: Xe A} with dimG^ < co for each Xe A [7, 13]. In view

of the known fact that dim G < dim A whenever G is a cozero set of A [see,

e.g., 3, Proposition 1], A is locally finite dimensional iff it has a cozero cover

{Gx: Xe A} with dimG^ < co for each X in A . We write locdimA < « if

A has an open (or, equivalently, cozero) cover {G^: X e A} with dim6^ < «

for each X in A . If A is a normal space, since dimZ < dim A if Z is

either closed or cozero in A, then loc dim X < « iff A has an open cover

{GÁ : X e A} with dim Gx< « for each X in A, which is the original definition

of loc dim [4]. Following [10], if /: A —» Y is continuous, by W(f) we denote

the smallest cardinal a for which there exists a space Z of weight a and an

embedding g : X —y Y x. Z with / = nog, where n denotes the canonical

projection from Y x Z onto Y .

In this paper we establish the existence of universal spaces for several classes

of locally finite-dimensional spaces, in particular, for (i) the class of all locally

finite-dimensional spaces and (ii) the class of all locally finite-dimensional spaces

that can be mapped by some continuous function / with W(f) < x into a
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metrizable space of weight a . This seems to provide an affirmative answer to

Pasynkov's Question 12 in [11].

The results on universal spaces follow from certain factorization theorems

that are given in §2 and are corollaries of the factorization theorem for Dim,

the covering dimension function for uniform spaces introduced in [2]. Dim A

is defined in terms of the uniformly open sets of a uniform space A, i.e.,

sets of the form f~l(0,1] for some uniformly continuous /: X —► I. Thus,

Dim A < « iff every finite uniformly open cover of A has a finite uniformly

open refinement of order < « . The collection of all uniformly open sets of X

is a base for the open sets of A that is closed under finite intersections and

countable unions. If A is Lindelöf or a metrizable uniform space or has the

Stone-Cech uniformity, i.e., that inherited from ßX, then every cozero set of

A is uniformly open and hence Dim A = dim A .

2. Factorization theorems

In the following result, which is proved in [3], W(X) denotes the weight of

a uniform space A .

Theorem 1. Let f: X —► Y be a uniformly continuous function between uniform

spaces and {Xk: X < x} a collection ofsubspaces of X with W(Y) <x . Then

there exists a uniformly continuous g: X —► YxT such that nog = f, where n

is the projection of Y x Ix onto Y, and T>img(Xx) < Dim Xx for each X < x .

Proposition 1. Let f:X—yY be a continuous function and {Xk: X < x} a

collection of Lindelöf subspaces of X with wY < x . Then there are continuous

functions g: X —<• Z and « : Z —► Y, where Z - Y x f, such that ho g = f

and dimg(Xx) < dim AA for each X < x (cf. [I, Theorem 2].

Proof. Let A be equipped with its Stone-Cech uniformity. Y can be embed-

ded in V and will be considered to be endowed with the subspace uniformity

inherited from V so that W(Y) < x . Now / is uniformly continuous and

Theorem 1 supplies a uniformly continuous g : X —* Z such that n o g = f,

where n is the projection from Z = Y x V to Y, and T>ixng(Xf) < DimA^

for each X < x . The result follows if we let « = n since each Xx and g(Xk)

is Lindelöf and dim Z = Dim Z if Z is Lindelöf.

A similar argument establishes the following result, which generalizes Theo-

rem 3 of [1] and Theorem 1 of [9], where only normal spaces are considered.

Recall that Y is said to be z-embedded in A if every cozero subset of Y is

of the form Y C\G for some cozero set G of A . Closed subspaces of normal

spaces and cozero or Lindelöf subspaces of arbitrary spaces are z-embedded.

Proposition 2. Let f: X —» Y be a continuous function into a metric space

Y and {A( : i e N} a countable collection of z-embedded subspaces of X .

Then there exist a metric space Z and continuous functions g: X —» Z and

h: Z -* Y such that h o g = f, dimg(Xj) < dim A for each i in N and

wg(A) < wf(A) for every subspace A of X with f(A) infinite [3, Proposition

5].
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We call a space strongly locally finite dimensional if it has a cozero cover

{C7;: / e N} with dimG¡ < i . Every metric locally finite-dimensional space is

strongly locally finite dimensional [7], but this is not always true in the class of

normal spaces.

Example. Let M be a convergent subspace of [0,cox) x I , where cox is the

first uncountable ordinal. This means that for each x in 7 , there is an a < cox

such that (a,cox)x {x} c M . Then M is normal with dim M — dim 7 = co,

and we can choose M to have loc dim = 0 [12, Proposition 5.4.5]. Consider a

cozero cover {G¡: i e N} of M and fix x e I . Then there exist a < cox and

/ e N with [a,cox) x {x} C <7( and since 7 is first countable and Gi open,

there is an open neighborhood V of x such that ([a,cox)xV)nM c G¡ . Now

([a, cox ) x V)(~)M is convergent in [0, cox ) x V and hence dim G¡ = dim V = oo .

Proposition 3. Let f: X —► Y be a continuous function from a strongly locally

finite-dimensional space X into a metric space Y . Then there exist a locally

finite-dimensional metric space Z and continuous g: X —> Z and « : Z —> Y

such that f = « o g and wZ <wY.JO —

Proof. Let {G¡: i e N} be a cozero cover of A with dimt7( < i, and fix a

continuous gt: X —> I with C7( = gt~'(0,1] . By Proposition 2, there exist a

metric space Z and continuous g: X -* Z and «: Z —► T x 7 such that

h o g — f x Yl°^x g., wg(X) < wY and dim g(G¡) < i for each i e N .
We may clearly take Z = g(A) and the result follows as it can be verified

that g(Gj) = h~ (n~ (0,1]), where ni denotes the projection of Y x I onto

its (/' + 1) th factor, so that {g(G¡): i e N} is a cozero cover of Z with

dims(C7.)</ .

3. Universal spaces

From Proposition 3 and a straightforward application of a method due to

Pasynkov [8] follows a known result for locally finite-dimensional metric spaces.

This was first established by different methods by Wenner [13] for separable

metric spaces and by Luxemburg [7] for arbitrary metric spaces.

Proposition 4. The class of all metric locally finite-dimensional spaces of weight

< x has a universal element.

Proof. Let M be a universal space for all metric spaces weight < x . Let

{Xx: X e A} be the collection of all locally finite-dimensional subspaces of

M, X their topological sum and /: A -> M the unique function from A

to M whose restriction to each Xx is the inclusion of Xx into M . Then

/ is continuous, A is locally finite-dimensional and, by Proposition 3, there

exist a locally finite-dimensional metric space Z and continuous g: X —► Z
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and « : Z —► M with f = ho g . Now the restriction of g to each Xx is an

embedding and Z is the required universal space.

The following result will prove useful. Recall that for an open set G of a

space A, ExG denotes the biggest open set of ßX whose intersection with

A is G. Ex(Gx n G2) - ExGx n ExG2 and, if Gx and G2 are cozero,

Ex(Gx U G2) = ExGx U ExG2 [5, Lemma 7.1.13].

Lemma 1. For every cozero set G of a space X and every normal space 77 with

G c 77 c /sxCr, dim G = dim 77 .

Proof. Firstly, dim G < dim// because G is z-embedded in 77 [e.g., 3, Propo-

sition 1]. Conversely, suppose dim G = « and let {Gx ,G2, ... ,Gk} be a

cozero cover of H . Let {FX,F2, ... ,Fk} and {Hx ,H2, ... ,Hk} be, respec-

tively, a zero and a cozero cover of 77 with H¡ c Fi c G; . Since dim G < n,

the cozero cover {GC\ Hx,GnH2, ... ,GriHk} of G has a cozero shrinking

(KpFj, ... ,Vk} of order <« . Then {Hr\ExVx,HnExV2, ... ,Hr\ExVk}

is an open cover of the normal space 7/ and, therefore, it has a cozero shrink-

ing {WX,W2, ... ,Wk} . It is readily verified that 77nExV¡ c Ë and hence

{ Wx, W2, ... , Wk} is a cozero shrinking of the cozero cover {GX,G2, ... ,Gk}

of 7/ of order < « . Thus, dim 77 < « = dim G, and the proof is complete.

Proposition 5. The class of all locally finite-dimensional spaces of weight < x

has a universal element that is locally compact.

Proof. Let {Xx: X e A} be the collection of all locally finite-dimensional sub-

spaces of f, A0 their topological sum and i : ßX0 —► /T the unique con-

tinuous function whose restriction to each Xx is the inclusion of Xx into

/T . Since clearly wXx < x, Xx has a cozero cover {GXa: a < x} with

dim (7^ < n(a) < oo . Now for each a < x, Ga — Uaga^aq *s a cozero

set of A0 with dimCra < «(a) < oo . Let ga: ßX0 —y I be a continuous

function such that G = Xn n H , where 77 = g~l(0,l] . Then A„ is

contained in A = \J(Ha: a < x) and, by Lemma 1, since Ha is Lindelöf,

dim77 = dim G < n(a) < oo . Now let f-.X—yTxT be the restriction to

X of ix I1Q<T 8a and apply Proposition 1 to obtain a space Z of weight < x

and continuous functions g : A —► Z and « : Z —» /T x 7T with / = « o g and

dimg(7/Q) < «(a) < oo for a < x . Note that for a < x there is a projection

h:7tx7t->7 suchthat ga = nof and hence #(//,) = «"'(^'(0, l])n#(A)

is a cozero set of g (A), which, therefore, belongs to the class of locally finite-

dimensional spaces of weight < x . Finally, g (A) is a universal element of this

class because the restriction of g to each Xx is an embedding and Ix is a uni-

versal space for all spaces of weight < x . Furthermore, if Han = g~ (1/«, 1]

and Fan = g~'[l/«, 1], « e N, a < x, it is not difficult to see that g(Fan) is

compact and {¿?(77Q„): n e N, a < x} is a cozero cover of g(X) with g(Han)

compact. Hence g (A) is locally compact.
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Only minor adjustments of the same proof suffice to establish the following

two results. In the first case, {Ha : a < x} can be taken to be countable and, in

the second case, n(a) a fixed integer « .

Proposition 6. The class of all strongly locally finite-dimensional spaces of weight

< x has a universal element that is a-compact and locally compact.

Proposition 7. The class of all spaces with loc dim < « and weight < x has a

universal element that is locally compact.

We can, in fact, improve the last result as follows.

Proposition 8. The class of all spaces with loc dim < « and weight < x has a

universal element Z which is compact with dim Z < « .

Proof. Let Y be the universal element provided by Proposition 7 and let Z =

Y U {oo} be the one-point compactification of Y . If F is a closed set of

Z disjoint from oo , then F is a compact subspace of Y so that dim F <

loc dim Y < « . This and the normality of Z imply dim Z < « [4], and the

result follows.

The same conclusion can be reached through the following result, which is of

some interest, and the fact that the class of spaces of weight < x and dim < «

has a compact universal element [8].

Proposition 9. An infinite space X with loc dim A < « can be embedded in a

space Y = X u {oo}, where oo £ A, with dim Y < « and wY = wX .

Proof. Let {Ga: a < x} be a cozero cover of A with dimGa< n for a < x —

wX . Further, let F , be zero sets and G , be cozero sets of A, i e N, with
7 at at ' '

F , c Gni c F tol and G = (J°°i F ,■ = UÜi G , . We define a subset G of yat at al + 1 a       ^/=1     ai        ^/=1      at

to be open if either G is an open subset of A or Y - G is a closed subset of

\J(Fak '■ ote J) for some k e N and a finite subset J of x . Clearly, wY = x .

Consider a continuous /: A -» / with Gai = f~l(0,1] and Fai = /~'{1} .

This can be continuously extended to Y by setting /(oo) = 0, for, in that

case, the restrictions of / to both of the closed sets F ...  and Y — G ¡ are
' J at+l at

continuous. Hence each F , is zero in Y and each G , and G   cozero. Thus
at al a

Y has a base consisting of cozero sets and is therefore TychonofT.

Now consider a closed set F of ßY disjoint from oo . Let V be an open

neighborhood of F in ßY with oo  ^   V and pick ax, ... ,ak < x with

Y nY c \J¡ ,G   .  Then F is contained in M, i ExG    and there exists a
^1=1   a¡ ^/=i        en-

closed cover {F¡: i =r I,... ,k} of F shrinking {F n ExGa : i = 1, ... ,k} .

If 77,  is a cozero set of ßY with 7^ c 77( and H¡ Ci Y c Ga , by Lemma

1 dim//, < « and hence dimT", < « . Now, by the countable sum theorem,

dim F < « . Hence dim Y = dim/? y < « , and this completes the proof.

For the rest of our results we need a lemma and a simplified version of [3,

Theorem 9]. Recall that bwX is the smallest cardinal x for which there exists

a continuous f:X—yM with M metrizable and W(f) = x [10].
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Lemma 2. Let X be a locally finite-dimensional space with bwX < x . Then

X has a cover of cardinality < x consisting of cozero sets with dim < oo .

Proof. We can consider A as a subspace of M x V for some metrizable M .

Let {GXl: : X e A, i e N} be a er-discrete base of M and {Ua : a < x} a base of

f consisting of cozero sets. For each i and « in N, let Va ¡ n be the union

of all sets (Gx¡ x Ua) n A that are contained in some cozero set of A with

dim < « . Each va iH is the disjoint union of open sets with dim < « . Hence

dim Va ¡ n < n and evidently {Va ¡ n : a < x, i ', n € TV} is the required cover of

A .

Theorem 2. Let f: X —♦ Y be a perfect and uniformly continuous function

between uniform spaces such that Y is paracompact and every cozero set of Y

is uniformly open. Then dim A < Dim A [3, Theorem 9].

Proposition 10. The class 'W of all locally finite-dimensional spaces that can

be mapped by some continuous function f with W(f) < x into a metrizable

space of weight 8 has a universal element which is locally Cech-complete and

paracompact.

Proof. Let M be a universal element of the class of all metric spaces of weight

< 8 which is complete. Every member of W is homeomorphic with a locally

finite-dimensional subspace of M x V . Let {Xx : X e A} be the collection of

all such subspaces, AQ their topological sum and i: ßX0 —> ß(M x f) the

unique continuous function whose restriction to each Xx is the inclusion of

Xx into M x Ix . By Lemma 2, each Xx has a cozero cover {GXa: a < x}

with dimG^ < «(a) < oo . Now each Ga = [JxeA^Xa ^s a cozero set 0I" ^o

with dimG(i < «(a) < oo and there exists a continuous ga: ßX0 —y I such

that GQ = ¿-'(0,l]nA0. Let Y = (M x f) x Í, / = / xría<TSa: ßX0 -

ß(M x V) x I', A = f~l(Y) and 77Q = g~l(0,l]nX, a < x . Note that

f: X —y Y is perfect, A is a paracompact p-space, each Ha is paracompact

as a cozero set of A and, by Lemma 1, dimHa = dimGQ < «(a) < oo .

We now endow A with its finest uniformity, M with that induced by a

compatible metric, f with its unique uniformity and M x f and Y with

the resulting product uniformities. Theorem 1 applied to f:X—y Y yields

a uniformly continuous g : X —► Y x V with / = nog, where n denotes

the projection of Y x Ix onto Y, and Dimg(Ftin) < DimFall, where Fan =

S~ [;,l]nl for each a < x and « in N . Note that F    is a z-embedded
°q    L n '    J an

subspace of A and therefore Dim g(F J < Dim F    = dim F    < dim 77   <f o\   an/   — an an   — a   —

«(a) . Now, if na: Y —y I denotes the projection onto the ath factor of the

second copy of V in Y, then g(Hn) = n~ (n~ (0, l])ng(A) . It follows that,

since f: X -* Y is perfect, the same is true of g: X -* g(X), n: g(X) —> Y

and 7i: g(Hn) —► n~ (0,1]. Hence g(Ha) is Cech-complete and paracompact.

Finally, if a: Y —y M denotes natural projection, it is readily seen that the

composite of n: g(Fan) —y Y with a is perfect and uniformly continuous

and, by Theorem 2, dim#(FtJ < Dimg(Fnn) < n(a) for each « in N and
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a < x . By the countable sum theorem for dim, dimg(Ha) < n(a), and it is

now clear that Z = \Ja<x g(Ha) is a universal element of f which is locally

Cech-complete and paracompact.

As with Proposition 5, two more results have almost the same proof. We

first point out that a slightly stronger condition is satisfied by Z . Let a, ,

a2, ... < x , « = ax Yl°lx na : Y —> Mxl    and er. : M x I   —y I the projection

onto the z'th factor of / . Then « is perfect and so is its composite with

n: g(X) — y . It follows that

is a Cech-complete paracompact /7-space. This is exactly what is needed in

Proposition 12.

Proposition 11. The class of all spaces with loc dim < « that can be mapped by

some continuous function f with W(f) < x into a metrizable space of weight

8 has a universal element which is locally Cech-complete and paracompact.

Proposition 12. The class of all strongly locally finite-dimensional spaces that can

be mapped by some continuous function f with W(f) < x into a metrizable

space of weight 8 has a universal element which is a Cech-complete paracompact

p-space.

The last result can be rephrased as follows. Recall that pwX is the supre-

mum of all cardinals a for which there exists a map from A onto a metrizable

space of weight a [10].

Proposition 13. The class of all strongly locally finite-dimensional spaces with

bw < x and pw < 8 has a universal element which is a Cech-complete para-

compact p-space.

Proof. It suffices to prove that for the universal space Z of Proposition 12,

pwZ < 8 . This is true because Z can be mapped by a perfect map onto a

metric space of weight < 8 [10, Proposition 2].

Consider a locally finite-dimensional normal and countably paracompact

space A such that dim F = loc dim F for every closed subset F of A . Let

{/7(: / e N} be an open cover of A with loc dim 77 < i . This has a closed

shrinking {F¡ : i e N}, and if G¡ is a cozero set of A with F c G¡ C H¡ then

G i is the countable union of closed sets of A with dim = loc dim < i . By

the countable sum theorem, dim G¡ < i, and hence A is strongly locally fi-

nite dimensional. Thus, Propositions 6 and 13 generalize the results of Bobkov

quoted in [11].
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