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FACTORING FOURIER TRANSFORMS WITH ZEROS IN A STRIP

D. G. DICKSON

(Communicated by Paul S. Muhly)

Abstract. / is the Fourier transform of an infinitely differentiable function

of compact support on R if, and only if, / is entire and of exponential type

with \f(x)\ - 0(\x\~N) for each N > 0 as |jc| —> oo for real x . In some

sense, such an / has its zeros close to the real axis and has positive density of

zeros F with n(r) = Dr + o(r). It is shown here that if the zeros of / are in

a strip parallel to the real axis and if n(r) = Dr + 0( 1 ), then / is the product

of two such transforms with zero densities D/2 and indicators one-half of the

indicator of /. There is a factorable / in 3f(R) with zeros on a line and not

satisfying the stricter density condition. Analogous results hold for transforms

of distributions of compact support on R. The study was motivated by the

outstanding problem of Ehrenpreis that asks if 3t(R) * 3>(R) = 3t(R).

1. Introduction

Let y = 3¡(R) and W = f'(R) denote, respectively, the algebras of all

Fourier transforms of infinitely differentiable functions of compact support on

the real line R and of distributions of compact support on R. By the Paley-

Wiener-Schwartz theorem, &" and 9 are the sets of entire functions of expo-

nential type, with those in SP satisfying |/(;c)| = o(|Jc|~ ) as |jc| —► oo for each

positive integer N when x is real, and those in & satisfying \f(x)\ = o(\x\N)

for some positive integer N as \x\ —► oo. Multiplication of functions in SF

and S? corresponds to convolution in 2(R) and l?'(R).

In [6] Ehrenpreis asked if 3¡(R) *3f(R) —* 3¡(R) is a surjective map; equiva-

lent^, is each / in SF the product of functions in & ? A negative response to

the same question has been established in 3>(Rn) for « > 2 in [2], [7], and [8],

while the question remains unanswered in 2¡(R). Although the corresponding

question in W is trivially true using a polynomial factor, a more significant

question in & is whether factors can be found that halve the density of zeros

and the indicator function of the product. The factorability of functions in

^ that are real on the real axis was established in [3] and was easily extended

under the same condition to S" in [4]. In [5] it was shown that factorability
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was possible in larger classes of functions and in S* and 'S when density and

monotonicity conditions were imposed on the zeros of /. Here it is shown that

a slightly stronger density condition will yield factorability when the zeros of /

lie in a strip parallel to the real axis.

The main tool used here is the factorability in S7 and S of functions with

only real zeros [3,4,8]. Unfortunately, we are able to exhibit a function in SF

that is factorable (since it has only real zeros) and does not satisfy the stronger

density condition.

2. Preliminaries

Let / be in &. Suppose [a, b] is the interval of support of the inverse

Fourier transform of /, {zn = rnexp(idn)} is the set of non-zero zeros of

/ ordered by non-decreasing modulus, and n(r) is the number of zeros of

modulus at most r. Then limr_(00 n(r)/r = D > 0, and the series ^Zcos8n/rn

and 2^,\sin8n\/rn converge. The fact that the second series converges is the

sense in which the zeros are said to be close to the real axis. Actually, the zeros

have equal right and left-hand plane densities. The indicator function of / is

hf(8)= hm l0g^re   ^ = max{asin8,bsin8}.
J r-»oo r

D = (b - a)/n , and / has the product representation

f(z) = e-i(a+b)z/2+dzmf[(l-^-)

»=l  ^ n'=1

For our factorization considerations there is no loss of generality in assuming

that d = m = a + b = 0. Then
oo

(i) /(z)=n(i-f)
n=l  V Z«'

while D = 2b fk and h Ad) = b\ sin0|. Note that products by polynomials or

division by polynomial factors of functions in jF and W are still in SF or

&, respectively. SF and St are also translation invariant since f(z) is the

transform of u(t) if, and only if, f(z + r) is the transform of exp(-/T/)w(/).

Some of these facts and appropriate references may be found in the book [ 1 ]

by Boas.

3. Factorization

The content of this investigation is contained in the following theorem.

Theorem. / is in SF (resp. & ) with zeros {zn} contained in a strip parallel to

the real axis and n(r) = Dr + 0(1). Then f = fxf2 for two functions /,, and

f2 in SF (resp. S? ); each factor has a zero set of density D/2 and an indicator

function one-half of the indicator of f.

Proof. The proof will be written for / in SF with the very few adjustments for

/ in & indicated when they arise. The broad approach will be the following:
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Beginning with / in F, auxiliary functions F and G with real zeros will

be constructed. F will be in SF since it will be dominated in modulus on

R by /. G will be in SF since it will be comparable to F on R by our

density assumption. Using our earlier theorem, G will be factored in SF. By

a vertical translation, those factors will be transformed to functions in SF that

will dominate corresponding factors of / in modulus on R, ensuring their

inclusion in SF.

Assume that / has the form (1). In view of the previously indicated invari-

ances of SF, we may assume that the zeros of / are in the strip 0 < Im(z) < ß

and that |Re(zn)| > 2ß for each zero z . Two sequences {tn} and {xn} of

real numbers will be constructed from {zn} to serve as zeros of F and G.

With z = rexp(id), the plane level curves C of r/|cos0| are circles tangent

to the imaginary axis at the origin; let Cn be the level curve through zn . Since

| Re(zJ| > 2ß, zn lies on the upper outside (away from the imaginary axis)

quarter of Cn . Let tn = rn/cos8n so that t is the non-zero point of inter-

section of Cn and the real axis. Then let xn = (tn ± (t2n - 4ß2)l/2)/2 using the

positive root when tn > 0 and the negative root when í < 0. Then xn + iß

is the upper outside point of intersection of Cn and the line Im(z) = ß . We

will show that SF contains

(2)

OO      / V OO       / \

^)=n(i-f) and Gw=n(i-f)

For z = rexp(/0) on Cn , r/ cos 8 = tn, and for all real x,

.xsinöi     x     .     x
1-= 1-+ i-

Since the level curves of r/|sinô| are circles tangent to the real axis at the

origin, it is clear that |1 - x/z\ increases as z traces the upper half of Cn in

the direction toward the imaginary axis. As a result,

(3) 1 < 1
x

z
< 1

*n + iß

Since / is in SF, £ \/tn converges and {tn} has the density D of {zn} .

Lindelöfs theorem implies that F is entire and of exponential type. By (3),

I^MI < l/MI for a11 real x, so F is in SF.
While it is easy to show that G is entire and of exponential type, it is less

easy to compare \G(x)\ with \F(x)\. To accomplish the first of these, we use

the easily established facts that \tn - xn\ < ß and tnxn > t„/2, so that

1
<

n   n

<
2ß

Since F is of exponential type, £1 ftn converges. Using the Cauchy criterion,

the convergence of J2l/t„ and the last inequality, it is easy to see that J2 l/xn



410 D. G. DICKSON

also converges. Since {t^} also has density D, G is entire and of exponential

type.

We now proceed to show that \G(x)\ is appropriately bounded on R so that

G will be in SF (or &). We will compare values of A(t) = |1 - x/t\ when

/ is tn and / is xn or xn+x . Since A(t) has different monotonicity intervals

determined by / = 0 and t = x, direct comparisons of A(xn) and A(tn) are

not always productive; also, it is often desirable to compare A(xn+X) and A(tn)

but tn and xn+x are not consistently ordered in the monotonicity intervals

unless tn and tn+x are separated. The desired separation can result by using

subsequences. The density assumption insures that this separation is possible

using a finite number of subsequences, which in turn results in the required

bounds for G on R and insures that G is in SF.

The fact that n(r) = Dr + 0(1) implies that there is an integer N > 0 such

that each square of side ß contains zn for at most N values of « . We will

now split the sequence {zn} into at most 27V subsequences.

Let j be an integer with \j\ > 2. Let

RJ = {z = x + iy;jß<x<(j+l)ß,0<y<ß}       for ; > 2

and

R. = {z = x + iy;(j - l)ß < x < jß,0 < y < ß}       for j<-2.

Then the 7? are square tiles (lacking their outside edges) whose union covers

{zn}. For indices j going from 1 to oo, let T, = U7?2+1, T2 = U7?2j.,

T_x = U7?_2._, , and T_2 = UR_2 . Consecutive squares in each T, are

separated by squares of side ß . Since / has equal positive densities of zero in

the right and left half planes, at least one of T, and T2 and at least one of T_ x

and T_2 contain infinitely many zeros. We will suppose each of the four T

contains infinitely many zeros with obvious modifications possible otherwise.

We will also suppose that (a) the maximum number of zn in a squares of T. is

Nj < N, (b) the first square of T, contains TV. zeros, and (c) infinitely many

squares of T. contain TV. zeros. These assumptions may be justified by the

invariances of SF indicated earlier.

The set of zeros zn in each T, may be partitioned into TV. subsequences

Sj , p = 1,2, ... , TV., in such a way that no two zn in 5 are in the same

Rk . Let

SJP = (zjpX=i       with Z7Pi in Rj

and for z.     in Rk , zJpq+x is in some 7?^., with \k'\ > \k\ + 2 . Then the real

parts of consecutively indexed zeros in ¡S.   are separated by at least ß .

The following separation assertion is easily proved since the rectangles are

separated:

h<?R*>    *„€ÄWi,    kk'>0,    \k'\>\k\ + 2

=> \t  - tx\ > 2b/3   and   |r¿|<|T|.
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To establish bounds on \G(x)\ we will consider only the case x > 0 since

a symmetric argument can be used for x < 0. We will compare terms Fx =

\l-x/tx\ and G„-|1-x/tJ.
For j = -1, -2 and p = 1,2, ... ,N , in each of S_,   and 5_2p ,

xjpq^<íjpq<Q   and C7 < T7

by (4) and the fact that /!(/) is increasing for / < 0. Hence for each r > 0,

(5) n <*j„<àj,i n *-;pi
For / = 1,2 and p = 1,2, ... , TV , choose /c = k(j ,p) so that t . fc < x <

T7P/t+i • In each of s\p and S2p tj    < tjpq+x by (4). Since A(t) decreases in

(0, x] and increases in (x, oo),

for tf = 1,... ,k(j,p), and

for # >k(j,p) + 1.

Combining these, for r > x + 4/?,

i pi       jpq-1

G     <7=\
JPQ JPQ

(6) jpk(j,p) n <?,* * c.P1 n ĴPQ

Combining (5) and (6) by taking products over p and over j,

2

(7)

2    Nj

j=ip=i

jpktj ,p) in«.
2p=l

;pl ni-
lnl<rl^|<r

The first term of the left member is the modulus of a product of Nx + N2 = Q

factors of the form 1 -x/tx where the X 's depend on x ; denote the product by

Px(x). The first term of the right member is a product of J2_2 TV = P terms

of the form |1—jc/tv,| each of which is bounded by ß~ (1+ ß)(l + \x\) since
p

|tJ > | Re(z^)| > 2ß ; denote the product bound by 77(1 + \x\) . Then, letting
r-»oo, (7) takes the form

(8) |C7(x)|<77(l + |x|)/'|JF(x)/pjc(x)|

where Px(z) is a polynomial factor of F(z) of degree Q. By a corollary to a

simple theorem in [3, p. 88], if F is in SF and ß is a positive integer, then

there are yN and 7?^ with the property that

\F(x)/p(x)\ <yN(l + \x\fN       for all x > RN

and all polynomial factors p(z) = TJ(1 - z/zf) of F(z) of degree Q. (A

similar statement for some TV > 0 and \x\N holds when / is in S.) It then

follows from (8) that G is in SF.

Since G is real on the real axis, it follows from [3] that G = Gx G2 where the

G, are in SF and have zero densities D/2. Let cr   denote the set of zeros of
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Gj. In order to simplify notation, limits as r —* oo of sums or products over

xk in Oj with \xx\ < r will be denoted by £?■ ar,d IT, • Then, for j = 1,2,

^)=r/(»-0-
By translation, 77 (z - /'/?) is in SF for each /, and

Since 53. 1/ta and X), l/^ converge, it follows from the Cauchy criterion and

1       1

ZX        TA

ki - Til    /?

that J2j ^lz\ converges. Then also

|r¿<|r,T¿€<Tj    A

converges. Hence we may define, for j = 1,2,

do) //*>-Ä n (i-r0.

Each /*. is then entire and of exponential type. With x real, (3) together with

(9) and (10) imply that |/y(x)| < |GJ(-/)?)r1|77/.(x)|. Since the 77, are in

SF, it follows that the f are in SF. Then / = fxf2 is a factorization in SF.

Clearly the 77^ and f have the zero density D/2 as do the G-. Since there is

no exponential term in the representation of the f,, the center of the indicator

diagrams of the f is the origin. Since the density of /. is D/2 = bn and is

the length of the indicator diagram divided by n, the length of that diagram

is b so the indicator function for each /. is b\sin8\/2. This completes the

proof of the theorem.

4. An EXAMPLE

To show that not all factorable functions with zeros in a strip satisfy the

density restriction n(r) = D(r) + 0(1), we construct a function in ST with

real zeros and zeros of arbitrarily high order. In [3] a function / in SF was

constructed from z~ sinrcz by removing the zeros at ±(«!) 2" . We will now

construct an entire function g of exponential type that (a) has only real zeros,

(b) has zeros of arbitrarily high order, and (c) is bounded on the real line. Then

h = Sf will be factorable in SF and have zeros of arbitrarily high multiplicity.

To this end, we use the facts that when z = x + iy, \x~ sinx| < 1 and

|z"'sinz| <eM <elzl. Then,

\sin(nz/2n)

nz/T
< e»l*l/2"
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Let

n=\ '

\g(z)\ < exp(;rz 5Z 1/2") = exp(7rz), and \g(x)\ < 1. Hence g is of exponen-

tial type and bounded on the real axis, g has exactly k zeros at z = ±2  .
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