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ON DUAL SPACES WITH BOUNDED SEQUENCES WITHOUT
WEAK * CONVERGENT CONVEX BLOCKS

THOMAS SCHLUMPRECHT

(Communicated by William J. Davis)

Abstract. In this work we show that if X* contains bounded sequences with-

out weak* convergent convex blocks, then it contains an isometric copy of

L,({o,iri).

1. Introduction

We are concerned with the relation between properties of the weak* topology

of the dual X* of a Banach space X and the property of X containing £X(T),

or of X* containing L,({0,1} ) for a set T. The results of this manuscript

are related to those of J. Bourgain [B], R. Haydon [Hy], R. Haydon, M. Levy

and E. Odell [HLO] and J. Hagler and W. B. Johnson [HJ]; in particular, they

generalize results obtained in [B, Hy, HJ].

The notations and terminology are mostly standard. The first infinite ordinal

is denoted by co0 ; the first uncountable by cox and the first ordinal with the

cardinality of the continuum, by coc. The ordinal co is taken to be the smallest

ordinal such that there exists a family (Nf),,, of infinite subsets of N having

the property that f\*eF N, is infinite for every finite F c co , but not admitting

an infinite N c N, such that N\N. is finite for each £, < cop. It is easy to

see that, cox < cop < coc. More about co can be found in [F]; it is known for

example, that co{ < co — coc if we assume -^CH and MA by their definition

co0,cox,co , and coc are initial ordinals and can so be identified with cardinals.

Only for technical reasons do we distinguish between the finite ordinals and the

elements of the positive integers N, which we consider as cardinals.

For a set T, the cardinality is denoted by  |T| ; and 3°AT)  and ^^(T)

denote the set of all finite and infinite subsets of T, whereas 3s (T) denotes the

power set.  For simplicity, we consider only Banach spaces over the real field

R ; for a Banach space X, Bx (X) shall mean the unit ball and X*, the dual
-
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space of X . The weak topology on X and the weak*- topology on X* are also

denoted by o(X ,X*) and o(X* ,X) respectively.

For a set Y, L,({0,1} ) is the L,-space for the product measure

®5<4> + *i)

p
on the set {0,1} furnished with the product cr-algebra ®yel-3P({0,1}). We

consider the following two properties of a Banach space X concerning the

weak* topology on X* :

We say that the Banach space X satisfies

(CBH) (convex block hypothesis) if X* contains a bounded sequence (x'n)

which has no a(X*, X)-convergent convex block, and

(ACBH) (absolutely convex block hypothesis) if X* contains a bounded se-

quence (x'n) which has no a(X*, X)-convergent absolutely convex

block basis,

where a sequence of the form (¿3,l+¿~ a¡x'¡'- " € N) is called a convex block

(respectively an absolutely convex block basis) of (x'n) if (kn) is increasing

in N, (an) c Rq (respectively (an) c R), and J2¡=k~l a¡ = J (respectively

J2k"Jk'~x \a¡\ = 1 ) for each n e N.

It "is obvious that (ACBH) implies (CBH) and we remark that (ACBH) is

equivalent to the condition, considered by J. Hagler and W. B. Johnson [HJ]

and by R. Haydon [Hy], that X* contains an infinite-dimensional subspace

Y in which a(X*, A')-convergence of sequences implies norm convergence. In

[HJ] it was first observed that nonreflexive Grothendieck spaces enjoy (ACBH)

and it was proven that (ACBH) implies that X contains an isometric copy

of lx . R. Haydon [Hy] improved this result by showing that (ACBH) implies

that L,({0,1}"") is isometrically embedded in X*. J. Bourgain and J. Diestel

showed in [BD] that spaces having limited sets [cf. §3] which are not relatively

weakly compact have the property (CBH) and in [B] it was shown that (CBH)

implies that X contains an isometric copy of lx . Finally it was proven in

[HLO] that under the (set-theoretical) assumption that cox < cop (CBH) implies

that X contains a copy of lx (co ), which is under this hypothesis equivalent to

L,({0, l}Wp) c X* [ABZ]; the nonreflexive Grothendieck space constructed in

[T] under CH does not contain any copy of ix(cox) and, thus, shows that the

result in [HLO] is dependent on further set-axioms.

Our main purpose is to show:

1. Theorem. If X has property (CBH), then X* contains an isometric copy of

L,({0,lp).

Together with the above-cited result of [HLO] we deduce:

2. Corollary. If X satisfies property (CBH), then X*  contains an isometric

copyofLx({0,l}wn.
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2. Proof of theorem 1

The following lemma is due to H. P. Rosenthal [R]:

3. Lemma (cited from [HLO, p. 4, Lemma 3A]). Let X satisfy (CBH). Then

there exists a bounded sequence (x'n ) in X* and c e R such that for every

convex block (y'n) of (x'n) and every n < j there exists an xgBx(X) suchthat

lim sup(v ,x) > c + n,     lim inf(y'n ,x) < c — n,

and

sup
x€Bi{X) L

lim sup(x^ , x) - lim inf (x'n , x)
n—»oo n—»oo

= 1.

For the sequel, we assume that X has property (CBH) and that we have

chosen (x'n) c X* and c e R as in Lemma 3. To handle the space L,({0, l}r)

for a nonempty set T, we need the following notations: For a set A , the set of

all mappings <p: A —► {0,1} will be denoted by 2A ; for A' c A and cp' e 2A ,

the set of all extensions of tp' onto the whole of A will be denoted by 2<p 'A .

The union \J{2A\A e ¿PAT)} is denoted by Sr and for the domain of cp e ST

we write D(cp).

R. Haydon [Hy, p. 6, Lemma 3] provided the following characterization for

a Banach space Y to contain an isometric copy of L,({0,1} ).

4.    Lemma. Let  Y  be a Banach space and T a set.   Then  Y contains an
p

isometric copy of L,({0,1} ) if and only if there exists a family (y : cp e 5r)

in Y satisfying (a) and (b) as given below:

(a)   vy = 2{A'HAl ¿2 y9    f°r any A e ^/(r) >A'c A and f e lA'
(pelf' -A

(since  \29 ' \   =  T l_l    ,   this means that  y ,   is the arithmetic mean of

(y9:tpe2^A)).

(b)

<pe2A

= T,K\    f°rany Ae-^/(r)and K:^2Vr.
<f&A

p
In this case, there is an isometry T: L,({0,1} ) —» Y such that T(e ) = y   for

<p € Sr, where e  € L, ({0,1 }r) is defined by

,_ «|0(p)|
e<p ■- ¿ X{ee2r\6(y)=l?(y) if y€D(p) }'

Another sufficient condition, for X* to contain L,({0,1} ) can be formu-

lated using the following definition.
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Definition. Let T be a set. A family F = (x(A,B): A e &>f(T),B C 2A) in

Bx (X) is said to satisfy (9Ç) if the following condition holds:

(9Ç) For every  A  e ¿PAT)   and   n  e  N   there exists a family

(x'(cp, n) : cp € 2 ) c C* such that

(a) x'(cp,n) £co({x'm\m > «}), ifcpe2A,

and

\ ,e2^ / l    ̂ -KrFT-«) lf^   ̂ ß  '

whenever A1 c A, <p' e 2A and B' c 2A . For the sake of brevity, we

will denote the set {(A,B)\A e &>f(T), B c 2A} by 7r, the set of all fam-

ilies F = (x(A,B): (A,B) € /r) which satisfy (9Ç) by 9Ç; and the values

\(\- 1/(|^| + 1)- l/n) and \(\- 1/(|4| + 1)) by A(A,n) and A(A) respec-

tively for A e 3°f(T) and « G N.

With these definitions we are in a position to state the following result.

5. Lemma. Let Y be an infinite set. If 9^^ 0, then there exists an isometric

copyofLx({0,l}r) in X*.

Proof. Let F = (x(A,B): (A,B) e Ir) c BX(X) satisfy property (9Ç). For

each ç> € Sr and each «eN choose x'(cp,n) e Bx (X*) as prescribed in (9Ç)

and define for each y/ e Sr and each ^ e ^(T)

(5.1) y((,,^):=2|D(^H^       J]       i'(f.W + l>.
ç,£2l''lD<«'>n'',M

The net (t/(y/,/i): ^ e Sp)^^ (r) has an accumulation point (/(y): y € Sr)

in the product K := Times co({x'n '• n € ^}) " » er|dowed with the product of

the weak* topology on co({jc^ : n e N})w   (the elements of 3sAT) are ordered

by inclusion). From (9Ç) and (5.1), it follows that (y'(y/): y/e Sr) fulfills the

following three properties (5.2), (5.3) and (5.4):

(5.2) y'(v) e Q co({x^: m > n})w for each y/ e Sr,

n€N

(5.3)

y'(w') = 2M'|-MI    J2   y'W'        for A'c.Ae^f(Y)andy/'e2A'.

(5.4) (y'(yj),x(A,B))-c{
>A(A) ify/eB,

<-A(A)        ify/^B,

for A e ^.(T), y/ e 2A and B c 2/1
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[Since y'(y/) is a u;*-accumulation-point of the net (y'(y/,Ä): Ä e ¿PAT),

with D(y/) ci).]

We now choose a fixed y G T. Since T is infinite, it suffices to show that

the family (y'(y/ ) - y (yi )): y/ G ^r\{j,}) > satisfies (a) and (b) of Lemma 4,

where for 0 6(0,1}, and y/ G Sr, {y, y/e G 2D(v){J^ , is given by V6\D<v) = V
a

and y/ (y) = 9. Condition (a) follows from (5.3). In order to show (b),

let A G ^(TXiy})  and (a : cp g 2A) c R.   From (5.2) and Lemma 3 it

follows that for any x G BX(X) and cp G 2A we have (x,y'(q>x) -y'(<p°)) < 1,

which implies that || £pe2„ av(y'(cpx) - y'(cp°))\\ < ¿2f&A \af\. To show " > "

let e > 0. Without loss of generality, assume 2A(A) > 1 -e. Otherwise

replace A by an A e ¿PATXiy}) with Ac. A and 2A(A) > 1 -e and note that

by (5.3) we have

£ 2^\U)(y'(0l) -y'(#°» = £ av(y'(cpx)-y'(cpQ)).

V€2A V&-A

Now take x := x(Aö{y} , {<px\<p e2A and aa > 0}\j{<p°\<p € 2A and a < 0}).

By (5.4) we have

^2aa(y'(<p[)-y'(<p0))  > '¿:2aip{x,y'(<p1)-y'(<p0))
tp€2A ¡pe2A

> £flfsign(flf)2A(,4)>(l-e)X>,|.

<p€2A <pe2A

The assertion follows since e > 0 was arbitrary.     D

By Lemma 5, it is enough to show that 9^ £ 0. As we will see from

Lemma 6, it is sufficient to show that for every a 6 [ 1, co0] each F e 9^x a[

can be extended to an F0 e 9^0  ,.

6.    Lemma. Suppose that for every a e [l,ew0], each family F = (x(A,B):

(A,B) € /r, q[) C Bx (X) satisfying (9KX   ,) can be extended to an F0 = (x(A,B):

(A,B) G 7[0 q[) which satisfies (9^0  ,). Then 9^   is not empty; in particular,

Lx ({0,1 p ) can be embedded in X*.

Proof. In order to show that there exists an F e 9^ , we define an F„ G 9^

by transfinite induction for every ß G [0,<y,] such that Fp\¡  - F-ß whenever

ß < ß . If ß = ß+\, with ß < cox and with F-ß G <^¿ having been chosen, one

can use the assumption to get an extension Fß of F-B in ^ by reordering ß

into (yn : 1 < n < a) for an a < w0 and setting y0 = ß . If ß is a limit ordinal

and if we assume that (FB: ß < ß) has already been chosen, we first observe

that Ig = Ufi<«h ■ So one can find a family Fß = (x(A,B): (A,B) e IB) such

that FB\j — Fß whenever 0 < ß < ß. Since every A G &'Aß) is already an

element of £PAß), where ß < ß us sufficiently large, Fß satisfies (9^).     a
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In order to show the assumption of Lemma 6, one needs the following Lem-

mas 7 and 8. Lemma 7 can be shown in a similar way as [HJ, p. 3, Lemma 2],

where (ACBH) is assumed, while Lemma 8 involves the classical Ramsey theo-

rem as presented in [O, Theorem 1.1].

7. Lemma. Let (y'^l)) be convex blocks of (x'n), for i = 1, ... ,k, k € N,

and let Ô > 0. Then there exist infinite Nx, ... , Nk c N, and for every B c

{1, ... , k} there exists x(B) G Bx (X) with

>a-S) ifieB,
(y'{i),x(B))-c\   -K\\yn       V   >l       <y  <-(>_«?) ifi^B,

for i<k, neNr B c {1, ... ,k}.

Proof. By passing to subsequences if necessary, we can assume that ( y'n ), where

y'n'-— 113,=i y'„    f°r « G N, is a convex block of (x'n) also. By Lemma 3, we

find x G BX(X) and infinite M, , M2 c N with

(7.1)    0/,x)>c + l-¿        if «g M,

and    (y'n,x)<c-j + f£ÍfnGM2.

From the properties of (x'n) (compare Lemma 3), we deduce for each i < k

that

lim sup iy'¡'),x)=(  lim sup (y'n{,),x)-   lim inf (i/, x) )
!->oo,«€A/| \n—Kx,n€M, /t-»oo,n€Af2 /n—>oo,«€A/|

+   lim inf (y'„,x)
n—»oo ,n€M2

\      ô \      5
^l+C~2 + 4k=C+2 + 4k-

By passing to a cofinite subset of A/, , we may assume that

(7.2) {y>(>\x)<c + ^+*f.        if n€Mx.

Similarly we prove that we may assume that (y'n{,] ,x) > c - 1/2 - ô/2k if

n G M2. We deduce from (7.1) and (7.2) that, for each / < k and n G Mx ,

<t/(i),*) = *(>/,*)- j; (y'nU)>*)

j<kj¿i

> k(c + 1/2 - S/4k) -(k-l)(c+ 1/2 + S/2k)

>c + l/2-S.

Similarly, we deduce that (y'n , x) < c - 1 ¡2 + ô for i < k and n g M2. Now

let B c {1, ... , k). If we define for each i e {\, ... ,k} Ñ¡ := Mx if / G B

and TV, := M2 if / £ 5 and x(5) := x , then it follows for i < k and n G jV(.,

(7.3) ^.^»-cj  ^
>(i-c5) if/G 5,

(4-<J)        ifz^5.
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Repeating this process for every B G {Bx, ... ,B2k} = 3°({\, ... ,k})  we
Í1) (2^ )

get infinite sets  N D N¡    D  ■ ■ ■  D N¡      for every  i < k  and elements

x(Bx),x(B2), ... ,x(B2k) eBx(X) such that for every I e {1, ... ,2k} , i<k,

and « G N¡e), (7.3) holds for B := Be. Taking N, := ivf *> = f)e<2k N¡e) for i g

{1, ... , k} , we note that the assertion holds for the chosen x(Bx), ... ,x(B2k).

8. Lemma. Let (Jm : m G N) be a sequence of finite sets; for every m e N

and j G Jm let L(m ., again be a finite set. For every m G N, j g Jm, and

l G L(mtj), let jgjjj : N + m - R. ¿1/so, uíí«í«í /Au/ EíeL(m ;) í'/) > 0 for

m G N0, j e Jm, and k G N0 + w . 77í£« /Aere ex/s/s a subsequence (km) of N,

and for each w G N a/ieY _/ g Jm, a bijection b(m,j): {1,2, ... ,|L(m .J} —►

L,    .,, swcA //za/

|L(mJ)|

E G)(l)^kmt) £ °» wAe/rev«- w < w, < m2 < ■ ■ ■ < m[L{m ;)|.
¿=1

Proof. First let /°: N -* R, for t g {1, ... ,k), /< G N, be such that

E¿=i f(l\n) ^ 0 if « G N. We show that, for given infinite set N c N,

there exists an infinite M c N and a bijection Z>: {1,... ,k} —► {1,... ,k}

such that

k

(8.1) 5Z/     \mi) - 0        whenever m, < ■ • • < mk lie in M.
i=i

The classical Ramsey theorem (compare [O, Theorem 1.1 and following re-

marks]) states that for any infinite A^cN and any

s/ c [Ñ]k :={(«,, ... ,nk)eÑk\nx < ■ ■ ■ < nk}

there exists an infinite M <z N such that either [M]k cs/ or s/ c [N]k\[M]k .

Let U = {nx, ... ,nk[} be the set of all permutations on {1,2, ... ,k} . Setting

Af( := TV and using Ramsey's theorem, we can choose successively for each

/ G {1, ... ,/c!} an infinite MU) c N with M(i) c M(i~X) such that the set

J/" := {(«,,... ,nk) e [Mli'\\IÍmlJ"W(nf) > 0} either contains [M{\
or does not meet it. Now we have to show that there exists at least one i <k\

with  [M   ]k c sé% .   This can be seen as follows:   Assuming that no s/71'

contains [M{l)]k ,we conclude that sé71 n [M^]k = 0 for every n G II. This

means that for any w, < m2 < ■■■ < mk in M and any permutation

n G n, 2~3/=i / (me) < 0 • ßut this would imply, that for any mx < m2 ■ ■ ■ <

mk of M{k'], 0 > ¿, T.K&lf(t\mt) = (k - 1)! E?=1 E ¡L, /"K), which
contradicts the assumption. Thus, we have verified the assertion stated at the

beginning of the proof. Applying the same reasoning, for a fixed m G N and

for an infinite N c N0 + m , \J \ times, we get an infinite M   c N and, for
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every ;' G Jm , a bijection b(m,j): {1, ... , \L(mj)\) -> L(mJ), such that

L{m J)

(8-2)   £ Gm(ni) * 0, for ; g 7m and «,<•■• < B|W in vv/„
¿=i

It can be assumed that (Afm) decreases. For an increasing sequence (/cm), with

/cm G v\/m if m G N, the assertion is then satisfied.

Now we can state and show the last step of the proof of Theorem 1.

9. Lemma. Suppose a G [1 ,co0] and that F = (x(A,B): (A,B) G 7,, a.) sat-

isfies condition (9r,x .). Then there exists an extension FQ = (x(A ,B): (A,B) G

7[o,a[) °f F ■ which satisfies (3^^) ■

Proof. By induction, we will choose for every ß g [0,q] n w0 a family

(x(A,B): A c ß, with 0 G A and, if ß > 0, yS - 1 G ^ ; B c 2A) such

that the following condition (9.1) is satisfied:

(9.1) For each y G [/?,a] n coQ  and « G N there exists a family

(z'(çi,«):çi6 2') in X* suchthat

(a) z(cp, n) G co({x^ : m > n}) if cp e 2y , and

(b)

U^~M  53  z'(p,/i),^,5)\-c
\ (p€2f-y I

(  >A(A,n) ify/eB,

I  <-A(A,n)        ify/<£B,

whenever A e 3ö(ß)\j9,(\\ ,y\)   y/ G 2A and Bc2A.

(Since for every ß G [0,a]n&;0: Uo<ß'<«{^ c ß'\® e A and> if 0 < /?',

jí' - 1 6 ^} = {v4 c /?|0 G yí}, the value jt(/l,.B) is defined for each A e

&>f([l ,a[) U^(ß) and each B c 2A in the induction step ß .)

Having done this, we get an extension (X(A,B): A G â°Aa),B c 2 ) of F

satisfying (9^), which can be seen as follows: For an arbitrary A G ¿?'Act)

and an n G N, one chooses ß e [0,a] C\ co0 with A c ß and a family

(z'(ç»,w): p G 2^) as, in (9.1). Then one observes that (x'(cp,n): cp g 2 ),

can be defined by x (cp, n) := 2^'-^' E™e2?i z'(^ >M) ̂ or f e ^A ; this family

satisfies (a) of (9^) because of (9.1)(a) and from (9.1)(b) we deduce (9^) (b)
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by the following equations:

,M'|-MI 53   x'(cp,n),x(Á ,B')\ -c

_ /2M'I-MI

=    2

<p€2

\A'\-\ß\

53   2W"W   53   z'(#,*),*0O'))
=2»' •■< ^e2»'i /

53   z'(i»,«),x(^',5')\ -c
e2»-i /

J   >A(^',n) if/GTi', , v ,       A,
\ , ,       .    for A cA,(pe2    and 5 c2   .
I   < -A(/l ,«)        if cp <£B ,

If /? = 0, no jc(/4,5) has to be defined. To verify (9.1), we chose for y G

[0,a] n ew0 and /î G N a family (x'(ç>,n): <p G yI,y') C X* as in 9^x ,

(taking A := [\ ,y[) and set, for each cp e 2y, z'(<p,n) := x'(cp\. ,n). It

follows that (z'(p ,«):^62?) satisfies (a) and (b) of (9.1) for /? = 0. Indeed,

(9.1)(a) follows from (9r[X q[) , (a) and (9.1)(b) follows from (^,q[) (b) which

can be shown in the following way:

/2lAl~M   53  z'(cp,n),x(A,B)\~c
\ <f&.*<t I

53    x'(cp,n),x(A,B)\ -c
-¿V.[!.?( /

we2*

,M|0|[1,5-[|-IT

>A(A,n) ify/eB

<-A(A,n)        ify/^B,

whenever A g 3a({\ ,y[), y/ G 2   and 5 c 2 .

Suppose now that for ß > 0, x(A,B) has been chosen for each A c ß - I

with 0 G .4 and each B c 2 . For « G N we set y(«) := max{y < a: \y\ <

n}   (thereby concluding that  y(\) = 1,7(2) = 2, ...   and if a < coQ, then

a = y(\a\) = y(\a + 1|)...); for A G 3°f(a) we set 1(A) := max(A) + 1

(so we have A c 1(A) c a for an A G ^-(q) ) and, for y/ e Sa, ¿(y/) :=

¿(/>(y0). Choosing, for every n G N, (z(cp,n): y> e 27{n)uß) as in (9.1)(b)

(for ß - 1), and setting, for y & Sa and « G N with ;>(«) >i(y/), y (yi, n) =

^Dt^l-l-^^l^^^ -,(i?jn)   'we get a famüy   (-(í//)„):  ¥ESa¡   y{n)  >

¿(y)) with properties (9.2), (9.3) and (9.4) as stated and verified below.

By(9.1)(a)(for ß-\),

(9.2) y (<P , n) e co({x': m > n})        if cp € S   and y(n) > i(cp).
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From the definition of y(y/,n) we have for A e 3sAa), A1 c A,  (i/,6 2/l

and y(n) >£(A)

(9.3)
2'"-W   53   j>V,«) = 2M''-MI   53   2|ZW|-W")U/?I     53     z'(cp,n)

11/^2*' 'A i//€2v'-A (p£2<r >iW^ß

~\A'\-\y{n)Uß\ \~^ ~i i   i       ,        ~/,    /       .= 2' 2^      z(i» ,«)=y(V/ ,«).

Finally (9.1)(b) implies, for A G ̂ .([1 ,a[) ö3>(ß - 1), ^ g 2^ and y(«) >

1(A),

(9.4)

(>)V,«),x(^,7i))-c=/2W-W")u/'1     53     z'(y,,n),x(A,B))-c

J  >A(A,n) ify/eB

I  <-A(^,«)        ify/^B.

Define now, for m G N,

/m:={(^,5,V/)|^G^/([l,y(m)])U^((^-l)ny(w)),7ic2/,and ^62^},

for (A,B,y/)eJm, the set L(m^ B >w) := 2<""4U/', and for cp g L(mAJ¡<¥) and

/: > m :

■'(»M.B.^Ov*)

= |2M|-Mu/,|((7'(p,A:),x(^,7i))-c-A(^,A:)) if y, e B

- | 2lAl-lAußl(-(y'(<p,k),x(A,B)) + c-A(A,k))        ify,$B.

We conclude, from (9.3) and (9.4), that the assumption of Lemma 8 is satisfied.

Indeed, we have, for m G N, k > m and (A, B, y/) e Jm ,

E    J?m,A,B,v)(k) = (2lAl~lAUßl    E    ±(y(<P,k),x(A,B)))TC-A(A,k)

= ±(y(yy,k),x(A,B))Tc-A(A,k)>0.

So we can find a subsequence (kn) of N such that the family (y'(cp, «) : cp G Sa ,

y(«) > ¿(ç>))> where /($?,«) := y(cp,kn) if f e Sa and y(«) > ¿(cp), still

satisfies (9.2), (9.3) and (9.4), and such that, moreover, the following property



DUAL SPACES WITH BOUNDED SEQUENCES 405

holds:

(9.5) For every mgN, A G S°([l ,y(n)[) \j3°((ß - l)ny(n)) , B c

y/ G 2   , there exisi

b(A,B,yy,n):{l,

2   , and y/ G 2A , there exists a bijection

2Muy?|-MU _^2<r,Auß

such that
■jMu/fl-MI

,^|-Mu^|
53    y'(b(A,B,yy,n)(i),n¡),x(A,B)\ - c
i=i /

'    2lAU0l-IA¡

E    fi(A'B'^n)i,\kn,) + A(A,kn)>A(A,n)
i=i

if ^ G 5.

^E'V^^^^^J-A^.fcJ^-A^,«)
i=i

ify/$B,

whenever «<«,<•••< n2]Auf^M

By (9.2) we find an TV G ^(N) such that for each cp G 2ß (y'(cp,n): n G

N,n > \ß\) is a convex block of (x'n). Applying Lemma 7 we find for every

cp G 2ß an N(cp) G ̂ (N) and for every B c 2ß an x()?,7i) G BX(X) such

that

(9.6)
/ Í  >A

0/'(fl»,/!),x08,fi))-c|  -
>A(£) h>G7i,

A(ß)        if cptB,

for Bc2p ,cpe2p and n e N(cp).

For an arbitrary A c ß with 0, (ß - 1) e A and 7i c 2    we set x(A,B) :=

*(/MJ„eB2^).
Now we have to verify (9.1 ). Toward this end let n G N and y e[ß,a]C\co0

be arbitrary. We may assume that y(n) > y, otherwise we replace n by a

sufficiently large ñ G N. We choose !eN such that

£ > 12-«-22|/>l-sup(||x'|| + l).
;€N      '

yßNext we choose for each i €{l,... ,£} and <p g 2p an «(#>, /) G N with

(9.7)
(a) n(cp,i)>2n    and    n(cp,i) <E N(cp),

(b) max({/i(^,i'-l)|fl»e2^})<min({/i(ç»,i)|fl»e2^}),        if 1 < t < t.
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By (9.7)(a) and (9.2), the family (z'(cp,n): cp e 2y) satisfies (9.1)(a). To show

(9.1)(b), let AeaB([l,y[)LI^B(ß), B c 2A , and ice2/'; it remains to show

i,i_ivi   ^^    , (  >A(A,n) if y/e B,
(9.8)        2MI  M  53  z'(cp,n),x(A,B))-c\   ~   \      ' ./        '

9££.y {  <-A(A,n)        ifyi^B.

To do this, we consider two cases:

Case 1.  0 G A and (ß - 1) G A (thus Ac ß and x(A,B) was defined in the

present induction step). For this case we remark first that, by (9.3),

2W-'"  53  z'(ç,,«) = i5321^1   53  y'(y>',n(cp',i)).
ç>€2<" 1=1 tp'c2fß

Moreover, yv e B *> 2wJ c\JlpeB2'i'tß and y/ i B o 2V-ß nIJ^GB2*'ß = 0;

thus, by the definition of jc(y4, 7?)

{2\A\-\ß\   J2   y'(cp,n(cp',i)),x(A,B))-c
ipiç^v -ß

->'-•*   53   (y'(cp',n(cp',i)),x(A,\j2A)-c

in_L>^-jß]Ti)>A(A,n) ifiyeB,

<-^-TBiTT)<-A(A,n)        ify/^B,

which implies (9.8).

Case 2. A g ^(yî - 1) \J¿?([\ ,y[) (thus, x(^,5) was chosen in a previous

induction step or was given by the assumption). Setting b := b(A,B, y/,2n)

(compare (9.5) and remark that

Ae&A[l, y[)U0>Aß - 1) c ¿?>A[l, y(2n)[)u^Aß - 1))
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we obtain

,MI-|y| E z'(^'")
»621» •?

= jE^]~M E/(*.»<*!,,o
i=i (fÇjV.-l

= 1E2M|-MU,|     E     2Mu,|-M    E    yV.lKf'l^O)
i=i

- }_y* 2lAl~lAußl

i=i

-it*

i=i

53    y'(cp',n(cp'\ß,i))        [by (9.3)]
i'=l f)'e2»'^u*'

( 2\AUß\-\A\

,\AUß\-\A\

i = l

53    y'(b(j),n(b(j)\ß,i)

[the image of b is 2W'     ]

= l2Mu^|-M|

í+l_2l/,l-l/,uíl 2l/,l-l/"J^l

53      53 y'(*(/),»(ia)i,,/-i+j))
1=1 }m\

2\A\-\Auf\ 2MI-MUÄI

+    ^2       H    y'(b(j),n(b(j)\ß,i))
j=i       j=i+\

1 f-(M-i-2MI-Uu'1)

+ E E /(*(7), «(6(7)1^0)
i=í+2-2MI-l',uíl ;'=1

[by changing the order of summation].

Now we remark that the norm of the second and third sum between the brackets

of the last lines does not exceed the value 2 ' sup €N ||x'||, which is not greater

than £/\2n by the choice of £ . For the first sum, we remark that by (9.7)(b)

2«<«(è(l),/-l + l)<n(è(2),/-l+2)---<«(è(2|/,u/î|-MI),/-l+2Mu/î|-MI),

whenever / G {1,...,/+ 1 - 2[AußhW} . It follows from (9.5) that the first sum

multiplied with l/£(2Außl~lAl) is, up to the factor q := £/(£ + 1 - 2lAußl~lßl)

a convex combination of elements y   which fulfill

(y ,x(A,B))-c
>A(A,2n) if y/ G B,

<-A(A,2n)        ifyi^B,

From the choice of £ it follows that \\-q\ < 1/12« which implies the assertion

(9.8) and finishes the proof.
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3. AN APPLICATION TO THE LIMITED SETS IN BANACH SPACES

A subset A of a Banach space X is said to be limited if all weak*-convergent

sequences in X* converge uniformly on A . It is easy to see that all relatively

compact sets are limited, while in [BD] it was shown that every limited set has

to be weakly conditionally compact. More about limited sets can be found in

[BD, DE, S].
In [BD, Proposition 7] it was shown that in Banach spaces, not containing

£x , every limited set is relatively weakly compact. This was done by proving

first that spaces possessing limited sets which are not relatively weakly compact

enjoy property (CBH).

With Corollary 2 we get the following generalization of this result (remark

that by [P], L,({0,1}N) c X* iff £xcX):

10.    Corollary. If the dual of a Banach space X does not contain L, ({0,1 }w'),

then all limited sets are relatively weakly compact.
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