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A GENERALIZED HOLDER INEQUALITY
AND A GENERALIZED SZEGO THEOREM

FLORIN AVRAM AND LAWRENCE BROWN

(Communicated by William D. Sudderth)

Abstract. We prove a limit theorem connected to graphs, which when the

graph is a cycle reduces to Szego's theorem for the trace of a product of Toeplitz

matrices. The main tool used is a Holder type inequality for multiple integrals of

functions which are applied to variables satisfying linear dependency relations.

1. A. Introduction

When establishing the convergence of the distribution of sums of functions

of Gaussian fields, by the method of moments, one is led to the study of the

asymptotic behaviour of a certain type of deterministic sums associated with

graphs (see Definition (1.1) below). For example, these sums are encountered

in the work of Giraitis and Surgailis [Gl] and [G2], and Fox and Taqqu [Fl]

and [F2].

When the graph is a cycle, these sums reduce to the trace of a product of

Toeplitz matrices, first studied by Grenander and Szego [GS]. We show that

a Szego type result holds also in the case of general graphs. The key step in

establishing it was showing that a generalized Holder inequality, of independent

interest, holds under the "power counting" conditions known to physicists.

In a companion paper [A2] we show how our results, combined with graph

theoretic results, can be used for establishing convergence to the Gaussian dis-

tribution, by the method of moments.

Definitions. Let G = {'V ,1?) be a directed graph, with  V vertices, E edges,

and ß components.
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688 FLORIN AVRAM AND LAWRENCE BROWN

Associated with every edge e, e — 1, ... ,E, there is a function f   (x) G

lly to the whole line; he

L„       for 1 < p < oo,

S?n [-71, n], extended periodically to the whole line; here,
Pe

& = I    p
"      \ C       for p = oo.

The Fourier coefficients of /   (^) are denoted by

/f := f exp(/^)/w(z)
2ä'

Associated with each vertex v, v = \, ... ,V, there is an index / , jv =

1,2,.... We consider sums of the form

where vg , and t> e 0 are the end and start vertices of the edge e.

When the graph G is a cycle, Sn(G) is the trace of a product of Toeplitz

matrices. Genander and Szego [GS] showed in this case that when P (%) G

^(=C),then:

(«■*> v-/*n/"wë-
" J-*e=\ Z7C

Let Ze = (pp)-'.

By Holder's inequality, the condition to ensure that the R.H.S. of (1.2) is

well defined is:

E

(1.3) EZ^L
e=l

In fact, (1.3) ensures also that (1.2) holds (see [A]). Note also that when

n = 2, (1.2) becomes Parseval's relations (see Katznelson [K, pg. 35]).

These results for cycle graphs have analogues in the case of general graphs.

The R.H.S. of (1.2) becomes then a multiple integral with respect to variables

yc, c = I, ... ,C, where C is the maximal number of independent cycles of

the graph.

Sn(°} __ „/* _  f TT A'h Y^dJc
J[-n,n]c „_, „_,   ^"'[-a,»r ^=1 c=l

Here, // is the number of components of the graph, and Xe are certain linear

combinations of the yc's (see (1.5)). The condition (1.3) has to be replaced

then by conditions which ensure that 1(G) is well defined.
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B. The Holder inequality for linearly dependent variables

Let X¡,  i = 1,...,«, be variables which are linear combinations of the

variables yj., j = 1, ... , m,

m

with coefficients \y¡ : Xf] which are integers. The Xi 's will be viewed also as

the column vectors in R'" with components \y. : Xt\, j = 1, ... , m. For any

subset A c {Xx , ... ,Xn} , we denote by r(A) the rank of A G R'" .

For each / = 1, ... ,n , we have a function f   (X) G L  [-n,n]. Let Z. =

(P¡)~ • We will say that (Z() and (X¡) satisfy the power counting conditions

(P.C.) if:

(P.C.) £z,.<r(¿),        VAc{Xx,...,XJ.
X¡€A

Theorem 1. Suppose that for i — 1, ... ,n, y (X) G L , 1 < pt < oo, that

Xj,  i = 1, ... ,n , are linear combinations with integer coefficients of y., j -

1, ... ,m, and that the power counting conditions for {p¡)~1 and X¡ hold. Then,

(1.4) $XWX-
1=1

Ji-**rM ;=i Ln

Remarks. 1. For an independent set /I the (P.C.) condition follows automat-

ically from Z; < 1 . It is enough to check the (P.C.) condition for dependent

sets A, and in fact only for "maximal" ones, i.e., sets so that X¡ dependent

of A implies Xi. g A .

2. The conditions (P.C.) have been know for a long time to ensure the conver-

gence of the L.H.S. of (1.4), at least in the case when the functions y (X) are

regularly varying, and they were called the "power counting" conditions. See for

example Weinberg [WG], Lowenstein and Zimmerman [LZ], Manoukian [M],

Fox and Taqqu [F2].

Theorem 1 is proved in §2.

It would be interesting to extend Theorem 1 so that we are allowed to have

in the L.H.S. of (1.4) functions of several variables y (X¡ ., ... ,X¿ k ), i —

\,...n.

We provide in this direction a partial result, which states basically that The-

orem 1 continues to hold as long as the functions y can be approximated in

a very strong sense by sums of products.

Let us denote now by L l[-n ,n] ) = L_ ® • • • ®„ L the tensor product of

L , ... ,L   (k times), endowed with the greatest cross norm (i .e., for a finite
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sum of products:

k(xl,...,xk)=J2n/ij\xJ),
1=1 j=\

we define the norm

iiP=infénn/("\>
í=i j=\

where the infimum is taken over all decompositions of h of the form above;

completing then the set of finite sums of products under this norm yields the

tensor product space L ([-n,n] ); see for example Light and Cheney [LC,

page 6]).

Note that ||   ||   < ||    |||   , and thus L   is only a subspace of L>p

Theorem 1 '. Suppose that for i = 1, ... ,n, y g L ([-n, n] '), and that

Xx x, ... ,XX k , ... , Xn ,,..., Xn k are linear combinations with integer coef-

ficients of v ,  j = I, ... ,m, taken modulo 2n.   To each variable X¡ .  we

associate a number Z;    = (/?;)~ . Then, if the power counting conditions

J2 Z,j < r(A),       Wl c [Xtj ,i = 1, ... ,n, j = 1, ... ,k¿}
XijEA

are satisfied, the Holder inequality

f ,n/"(*u.-.*.*)ne
J[-n,n]"< i=1 V ' J=l   Z71

n

;=1

Nip,(1.4')

holds.

Remark. (1.4') does not hold if we replace L    by the larger spaces L   and the

greatest cross norms by the smaller ||   ||   norms. Indeed suppose it would, and

let us take /("(*) = (X)~l+e G Lx[-7t,n], and /2)(XX ,X2) G L2{[-n ,n]2),

and consider:

/      f\xx+x2)f{2)(xx,x2)dxxdx2.
J[-Ji,n]2

Since the power counting conditions here are satisfied, we would get that the

integral above is finite for any /( ' G L2([-n , n] ) which in turn would imply

that f"l){Xx + X2) G L2([-7t, nf) ; however, that is easily checked to be false if

e < 1 ¡2, leading thus to a contradiction.

Proof. Theorem 1 ' follows immediately from Theorem 1 and the definition of

the greatest cross norm ||    |||   .

C. SZEGO'S THEOREM FOR GRAPHS

Definition. Let F denote a spanning forest of the graph G and F1 its com-

plement, i .e., the edges of the graph not belonging to F . For each edge e G F1
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there is a unique cycle c such that c <~) F' = e.   This system of C cycles

(C = E - V + ß) is called the fundamental set of cycles associated to F'.

With each cycle c of a fundamental set we associate a variable yc. Let then

c

(1.5) Xe = ^2yc[c:e],
c=\'

where each cycle is assigned an arbitrary orientation and

/   0      ife<£c,

(1.6) [c: e] =       1       if e e c, and their directions coincide,

V -1       if e G c, and the directions do not coincide.

Theorem 2. Let G be a graph with ß connected components. Suppose that for

e=l,...,E, /((,)U)G^ ,  1 <p  <oo   (5?   = C), and that

;i.7) ^Ze<r{A),    VAc

vAere r(A) is the rank of the ]

coefficients given by (1.5). Then

e€A

» s\ ,
e> e&A

C

where r(A) is the rank of the {X }    ., interpreted as vectors over R   , with

:»•»)      ±sn(G)-,i(G)=r   n/"wn|.
" J{-n,7t]c e=x c=x  ""

w/Vre yc can correspond to any set of fundamental cycles.

Theorem 2 is proved in §3.

Remarks. 1.   By Theorem 1, the conditions (1.7) are precisely the necessary

conditions which ensure that the R.H.S. of (1.8) is well defined.

2. It is well known in graph theory that a subset A of the column vectors

[c : e], c = 1, ... , C, is dependent iff the removal of the edges in A increases

the number of connected components of the graph (see Bondy and Murty, [BM,

Theorem 12.2Ü]). This dependence structure is thus independent of the par-

ticular choice of the maximal set of independent cycles, and is known under

the name of the bond (or cutset) matroid of the graph; its rank function is also

known (see Bryant and Perfect, [BP, Exercise 3.3 and page 125]):

(1.9) r(A) = \A\ + ß-c(A),

where c(A)  denotes the number of connected components of the subgraph

cr,A).

2. Proof of Theorem 1

It is enough to check that (1.4) holds for the extremal points of the convex

domain determined by the (P.C.) conditions, since then it must hold for all the

domain by Riesz-Thorin interpolation (see, for example, Bergh and Lofstrom,

[BL, Exercise 1.13]).
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Furthermore the extremal points of the (P.C.) domain have only coordinates

which equal 0 or 1. In fact, polytopes determined by the same special type

of constraints as the (P.C.) domain are called polymatroids (see Welsh, 18.3,

Theorem 1), and formulas for their coordinates are known explicitly. (See

Welsh [W, 18.4, Theorem I].)

Let now z = (Z,,... ,Z ) be a point whose coordinates are all 0 or 1, and

let Az be the subset of X.,, i — 1,...,«, corresponding to its 1 coordinates.

Note that z satisfies the (P.C.) conditions iff Az, interpreted as a set of vectors

in R'" , is independent.

Indeed,

J2z¡<r(A),    VA     ~     $3z,.<r(yi),    \/A c Az
ieA i€A

*■>    card(^) = r(A),    VAcAz

<->    Az independent.

It remains now only to show that Holder's inequality holds when Az is in-

dependent. W.l.o.g., we may assume that the complement of Az is void (the

bounds of the bounded functions can be taken out of the integral). Let us switch

now to a new set of variables w. , which includes those X¡ with / g A and so

that each u¡ is a linear combination with integer coefficients of the v . This

last condition ensures that the Jacobian is cancelled by the "wrapping around

of the torus," i.e.:

/m r. mn/'^n^r/n/'wn^
i€A, j=\ J   i€A, j=\

But now each f{,) can be integrated separately, and the result holds. ■

3. Proof of Theorem 2

For any vertex v and edge e , let

/   0       if v , e are not incident,

1       if v is the end point of e,

\ -1        if v is the start point of e.

Thus, jVcj - jreu = J2l=] jv[v: e]. Let now

(3.1) w(1 = £>:é>]^.

e

Lemma 1.

(3-2)      sn(G)=i ^nv^nf/'W^).

where An(x) - S*=te' *> and uv  are ^inear combinations of xc defined in

(3.1).

[v ,e]



A GENERALIZED HOLDER INEQUALITY 693

Proof. Replace in Sn each f¡e) by Jlnexp(ikXe)f{e\xe)dxe/2n. Thus,

sn= t /n/(V)exp(/E/j^^)nè
;„=l e=l \   e,v J e=\

v=\ ,...,V

J   v=l \  e / e=\ e=\

= /nv«jn(/e,o^)-
J   v=\ e=\  y '

Proof of Theorem 2. It is clearly enough to establish the case ß = 1, of con-

nected graphs.

The idea of the proof is to integrate in (3.2) first over the complement of the

space generated by the uv 's (and as it is well known in graph theory, the or-

thogonal of the vertex variables uv are the cycle variables yc). It turns out that

the resulting function is continuous in uv , and the measures l/«n„=i A„(Mt,)

converge weakly to the a0 measure, yielding thus the limit 1(G).

Let now T denote some tree of the graph, and T its complement. By

reordering the edges, we can assume that the edges in T1 are e = 1,... ,C. We

will change variables in (3.2), choosing as new variables yc = xc, c = I, ...C,

and uv , v = 1, ... , V - \(uv = - J2VI\ uv) ■ Let M denote the matrix with

elements Mv = [v: e], v = 1, ... , V - 1, e = 1, ... ,E, let A denote

its last minor of order V - 1 , and B denote its first C columns. Thus the

transformation is

(3.3) (yx,...,yc,ux,...,uv_x)' =(^ß   A j (Xt,... ,xEí-

To determine the inverse transformation, we will use two well-known facts

in graph theory:

(a) A is nonsingular, and in fact |det(/l)| = 1  (see [N, Theorem 3.3]).

(b) If we let M* e = [c : e], for c € &, e G é?, where W is any fun-

damental set of cycles, arbitrarily oriented, then M*M! = 0. If we associate

now to each edge e G T1 the unique cycle c for which c n T1 — e, we ob-

tain a fundamental set ^ of cycles (see [N, Theorem 2.22]); assigning each

cef the orientation of its corresponding edge will yield a matrix M* of the

form M* = (I D). By the above orthogonality of M* and M, it follows that

B + AD' = 0.

Using (a) and (b), it is now easy to check that the inverse of the transforma-

tion (3.3) is:

(3.4)

(*,,....*s)' = Q¡    ^-. ) (JV ...>«V-.)' = ((M*)'N')(yx,. ..,uv_x)',

where we denoted by TV   the last  V - 1 columns of the matrix.
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Since the matrix in (3.3) has integer entries, (3.2) becomes, after changing to

the new variables and integrating the y 's,

.«K-l)(3-5) s« =1 ,,, \ (- e «») n (a«k)§) a<". - •

where

A(«(),t; = l,...,F-l):=/'n/'Wn</J'c.
e=l c=l

and, by (3.4),

C V-l v-i

Xe = E^tC: *] + E "*A,. = Xe + E "«A ,e-
c=l t) = l J)=l

It follows from (1.7) and Theorem 1 that h is well defined. Note also that

h(0, ... ,0) = /(G), as defined in (1.8). To end the proof, we need to notice

two more facts:

(a)   the measure }¡An(-^~i uv)Y[yIi(\(uv)duv/2n) converges weakly

to the measure ö,0, , since the Fourier coefficients converge (see [F2, Lemma

7.1]), and moreover the measures have variations uniformly bounded.

Indeed, by Theorem 1, with p~l = Z = (V - \)/V, we get

u
V-l       \   V-l

M-XX IKk
v = l       /   v=l

V-l

[ duJ2it
v = l

< ¿IIA.IÍ = \ {? i»'"))" = 0{l)       (since ||AJp = 0(ny~xlp)).

(b)   h is continuous in the uv .

Indeed, by Theorem 1, the conditions (1.7) and the fact that the matrix M*

has integer entries ensure that

|/(G)i<nii/(X;
e=\

and thus the functional /: FT   i ¿„ —>R is continuous. But h is the composi-
e — t .    Pe

tion of the continuous function / with the continuous functional Te : R —►

&pt defined by Te(uv ,v = 1, ... , V - 1) = /«(. + £„ uv(v: e)) (here, /e)

are fixed), and thus is continuous. (The functionals Te are clearly continuous

when /(e>) is a continuous function on (-n,n); and since a function in J?

can be approximated in J? sense by continuous functions (recall that =2^ is

in our notation actually C ), the same follows for any function in Sf .)

By (3.5), and facts (a), (b) above, we get:

^^h(o,...,o)= fflfe\xe)fld-£ài(G).  m
J   e=l c=\
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Remark. As noted already in §1, the dependence structure given by (1.5) is the

bond matroid of the graph, independently of the particular choice of the set of

"cycle" coordinates. Furthermore, 1(G) is also independent of the choice of

the coordinates yc, since changing the basis of fundamental cycles amounts to

a linear change of variables with integer coefficients (see [N, Theorem 2.19]).

Thus, the result is independent of the initial choice of the tree T.
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