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ABSTRACT. Given a complex representation of a finite group G, construct the
integer valued function « on G by setting a(g) to be the dimension of the
fixed-point-space of g in the module corresponding to the given representation.
Usually, « is not a generalized character of G and for trivial reasons |G|«
is always a generalized character. The main result of this paper is that e« is
always a generalized character, where ¢ is the exponent of G.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let G be a finite group and let o be a Z-valued function on G which is
constant on rational-classes, (i.e. a(x) = a(y) if the cyclic groups (x) and
(y) are G-conjugate.) Although o need not be a generalized character (i.e. a
Z-linear combination of Irr(G)), it is always true that |G|a is a generalized
character. (This follows immediately from the observation that for each y €
Irr(G), the sum of the values over each rational-class lies in Z.)

For certain natural functions, «, a multiplier m smaller than |G| is sufficient
to make ma a generalized character. Our main result is that if a(x) denotes
the dimension of the fixed-point space of x in some C-representation of G,
then ea is a generalized character, where e is the exponent of G.

If 2 is a C-representation of G affording the character y, then the fixed-
point-space dimension function « associated with 2 can be computed from
x by the formula a(x) = X1 ¢ r>] , where [-,-] denotes the character inner
product. We introduce the notation y for this function.

Theorem 1. Let x be any character of G. Then e} is a generalized character,
where e is the exponent of G and j(x) = Xy L] for xeG.

In order to prove that ey is a generalized character of G, it suffices by
Brauer’s charaterization of characters to show that the restriction (eg), is a
generalized character of N for every nilpotent subgroup N C G. Because
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(X)y = Xy and the exponent of N divides that of G, it is enough to prove
Theorem 1 in the case that G is nilpotent.

We need to show (when G is nilpotent) that e[f,{] € Z for all irreducible
characters { of N . In order to make our inductive proof of this work, we need
to generalize it.

Proposition 2. Let G be nilpotent and suppose y is a character of G and {
is a generalized character. Then m(jg,{] € Z, where m is any positive integer
such that {(x) =0 whenever x™ # 1.

In particular, the condition that {(x) = 0 whenever x™ # 1 is vacuously
satisfied if m = e, the exponent of G. Proposition 2, therefore, includes the
nilpotent group case of Theorem 1 and so implies the general case by Brauer’s
theorem.

2. PROOFS

If x is a complex-valued function on an arbitrary finite group G and n
1S a positive integer, we write x(”) to denote the function on G defined by
x(")(x) = x(x"). It is well known that if y is a character (or a generalized
character) of G, then x(") is a generalized character. (See, for instance, [1,
Problem 4.7].)

Somewhat analogously, we define x“/ ") by the formula

M= S aw).

YEG
yr=x

Lemma 3. If x is a generalized character of G and n is a positive integer, then

""" is a generalized character.

Proof. Let { € Irr(G). Then

0= = 5 A 0T

= LS Y ot™

yEG
=[x,¢"]
Since ¢ is a generalized character, we have Ix, ¢ ] € Z and it follows that
x"/" is a generalized character. W

We need one further lemma for our proof of Proposition 2.
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Lemmad. Let N<G with G/N cyclic, and suppose x is a generalized character

of G suchthat y(x)=0 forall x€ G—~N. Then y = y/G for some generalized
character w of N .

Proof. Let C =1Irr(G/N) so that C may be viewed as a group of linear char-
acters of G and C acts on Irr(G) by multiplication. If 1 € C, then y = x4
since y(x) =0 if A(x) # 1. It follows that y is a Z-linear combination of
sums of orbits of the action of C on Irr(G) and so it suffices to show that each
orbit sum is induced from some character of N.

Let £ € Irr(G) and let n be the sum of the C-orbit containing &. If a is

any irreducible constituent of ¢, , we will complete the proof by showing that

%=y,

If x € G- N, we can choose 4 € C with A(x) # 1. Since 5 is a C-orbit
sum, we have n4A = n and so 5(x) = 0. Also, aG(x) =0 and so 7 and o
agreeon G— N.

Each irreducible constituent of n has the form &u for some u € C. Since
Uy = 1y, we have (u), = ¢, and thus 7, is a multiple of ¢, which is a
multiple of the sum of the G-orbit of a. Also, (aG) y 1s a multiple of the

G-orbit sum of a and thus, to show that  and o agree on N (and thereby
complete the proof), it suffices to compare degrees and show that n(1) = aG( 1).

Let B C C be the stabilizer of &£. Then n(1) =|C: B|&(1). If T C G is the
stabilizer of a, then & = BG where f € Irr(T) and g, is a multiple of «.
Since T/N is cyclic, we have B, = a and so ¢(1) = |G: T|a(l) and 5(1) =
|C: B||G: T|a(1). Of course, a®(1) = |G: N|a(1) and so we must show that
|G: N|=|G: T||C: B|. It suffices, therefore, to prove that |T: N| = |C: B|.

We claim that B = Irr(G/T). This would give |C: B| = |C|/|B| = |G: N|/
|G: T|=|T: N|, as required. To prove the claim, let u € B. Then

E=¢u=pu=(Buy)°

and (Bu;)y = By = a. However, B is the unique character of 7' lying
over a which induces ¢, and thus fu, = B. Since S, is irreducible and
N C ker(u;), it follows that u, = 1,.. (Use [1, 6.17], for instance). Thus
uelrr(G/T) as required.

Conversely, suppose u € Irr(G/T). Then

tu=pBu=(Bu,)’ =p°=¢

and so u € B. The proof is now complete. B

Proof of Proposition 2. The map y — j is additive and so it is no loss to assume
that y is an irreducible character. We proceed by induction on yx(1).

First, suppose x(1) =1 sothat y islinear. Writing K = ker(y), we see that
2x)=0if x ¢ K and j(x)=1if x€ K. Let N ={g € G|g" € K}, the
preimage in G of the set of elements in G/K with order dividing m . Since
G/K is cyclic, it follows that N is a subgroup and |N/K| divides m. Thus
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mj, is a multiple of |N/K|x, = (lK)N. In particular, mg, is a character of
N.

If xe G- N,then x" ¢ K andso x” # 1 and {(x) = 0 by hypothesis.
Since G/N is cyclic, Lemma 4 tells us that { = nG some generalized character
n of N. Then m[y,{]= [m)E,nG] = [mx,,n] and this lies in Z since myx,
is a character.

Now assume x(1) > 1. The nilpotence of G guarantees that we can write
X = z//G , where y € Irr(H) and H < G has prime index p. Then x, =
itv, oty where y, = v and the y,; constitute an orbit of the action
of G on Irr(H). Thus %, = )., ¥, and the y, are all G-conjugate. We will
also need to be able to compute j(x) if x € G— H; we work with modules to
do this.

Let V bea CG-module affording x . Then V =V, +V,+---+ v, where the
V. are CH-submodules of V' affording the characters y, € Irr(H) and these
submodules are permuted by G . In fact, if x € G— H, then (x) permutes the
V, transitively and we may assume x carries V; to V, , for 1 <i<p and x

1
carries Vp to V.

Holding x € G~ H fixed, we can define a map w ~— @ from V| into V' by
setting W = w + wx + wx® +--+wx?"". Thisis a C-linear transformation
which is injective since W # 0 when w # 0 because wx' € Vi, for 0<i<
p — 1 and the sum ) V; is direct. If w is a fixed point of x” in V¥, then
clearly w is fixed by x. Conversely, if v € V is a fixed point of x, then
writing v = v, + U, + -+ + v, with v, € V, and comparing the projections
of the equal vectors v and vx into the V;, we see that v, x = v,, V,x =
Vg, oo U, | X =1, and VX =0, It follows that v = 0, and that v, is fixed
by x?.

We have proved that the map w — W defines an isomorphism of the fixed-
point space of x” in V, onto the fixed-point space of x in V. This shows
that g(x) = @(x”) forall xe G- H.

Now
- m " - m m
miz. = Y A)Tx) = ARRATAR

x€G

where S, is the sum for x € H and S, is the sum for x € G — H. When
x € H, we have 7(x) =73, ¥,(x) and so

S, =|H| [(Z W,) ,c,,} =p|H|[v,{,,]

since all [¥,(,] are equal. (This is because the y, are G-conjugate). Thus
(m/|G|)S, = m[y,{,] and this lies in Z by the inductive hypothesis since

w(1) <x(1).
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To evaluate S, , define &(y) = 3 H =y {(x). Then

S,= Y, 2x){x)
xeEG—H

Yo ("))
x€G—H

=Y YED)
yeEH

= |H|[y,¢&]

and so (m/|G|)S, = (m/p)[¥,¢] and we need to show that this lies in Z.

If xeG-H and x’ =y e H, then p divides the order of x. If p + m,
then x™ # 1 and so {(x) = 0 by hypothesis. It follows that & is identically
zero if p + m and there is nothing to prove in this case. Suppose, therefore,
that pjm. If x" =1 and x* =y, then """’ = 1. Therefore, if y""/? # 1,
we have {(x) =0 forall x with x’ =y andso &(y)=0.

Now
)= tx)— > L)
x€G xX€EH
xP=y xP=y

and so. & = (¢!'7)y a—( H)“/ ) and this is a generalzied character by Lemma 3.

Since &(y) = 0 if y"/?) £ 1, the inductive hypothesis yields (m/p)[y/,&] € Z,
as required. W
The proof of our main result, Theorem 1, is now complete.

3. FURTHER REMARKS

If we drop the nilpotence hypothesis from Proposition 2, we get a statement
properly stornger than Theorem 1. Is this statement true?

Theorem 5. Let y be a character of an arbitrary finite group G and let { be a
generalized character of G with the property that {(x) = 0 whenever x™ # 1
for some fixed positive integer m. Then m[3,{]1€Z.

Proof. By Brauer’s theorem on induced characters, the principal character 1,

can be written as a sum of induced generalized characters af; where the a; are
characters of certain nilpotent subgroups N, C G. Then

(= CIG = ZC(Q,')G = Z(CMQ,’)G-

Thus
Mg =Y mi, ) 1= 3o mity O]

and this is a sum of integers by Proposition 2, since the {, o, are generalized
characters which vanish on elements x € N, such that x" #1. B
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We began this paper with the observation that if o is any Z-valued func-
tion on G, constant on rational classes, then |G|a is a generalized character;
equivalently |G|[a,{] € Z for each { € Irr(G). The point of Theorem 1 is
that in certain situations, for particular «, the coefficient |G| can be reduced
uniformly; i.e. for all {. It is true (and quite trivial) that for particular { we
can reduce the coefficient for all a. We conclude with this observation.

Theorem 6. Let o be Z-valued and constant on rational-classes of G. Then

1G]
4 s cZ
]
Sor all { €lrr(G).
Proof. Let x,,x,, ... ,x, berepresentatives for the conjugacy classes K/, ...,
K, of G. Then
|G| £(x)
—_ s = X)—
gt f= 2 g

XEG

i=1
and this is an algebraic integer since ((x;)|K,|/{(1) is integral. Also,
(1G]/¢(1)[«, {] is rational since |G|[a,{] € Z. The result follows. W

In view of Theorems 1 and 6, one might guess that if y,{ € Irr(G), then
(e/¢(1)[x,L) € Z, where e is the exponent of G . This is false since if G has
order p3 and exponent p (where p is prime), then [, x] = 1/p for y € Irr(G)
with x(1)=p.
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