THE FIXED-POINT-SPACE DIMENSION FUNCTION FOR A FINITE GROUP REPRESENTATION

I. M. ISAACS

(Communicated by Warren J. Wong)

ABSTRACT. Given a complex representation of a finite group G, construct the integer valued function α on G by setting $\alpha(g)$ to be the dimension of the fixed-point-space of g in the module corresponding to the given representation. Usually, α is not a generalized character of G and for trivial reasons $|G|\alpha$ is always a generalized character. The main result of this paper is that $e\alpha$ is always a generalized character, where e is the exponent of G.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let G be a finite group and let α be a Z-valued function on G which is constant on rational-classes, (i.e. $\alpha(x) = \alpha(y)$ if the cyclic groups $\langle x \rangle$ and $\langle y \rangle$ are G-conjugate.) Although α need not be a generalized character (i.e. a Z-linear combination of Irr(G)), it is always true that $|G|\alpha$ is a generalized character. (This follows immediately from the observation that for each $\chi \in$ Irr(G), the sum of the values over each rational-class lies in Z.)

For certain natural functions, α , a multiplier *m* smaller than |G| is sufficient to make $m\alpha$ a generalized character. Our main result is that if $\alpha(x)$ denotes the dimension of the fixed-point space of x in some C-representation of G, then $e\alpha$ is a generalized character, where e is the exponent of G.

If \mathscr{X} is a C-representation of G affording the character χ , then the fixedpoint-space dimension function α associated with \mathscr{X} can be computed from χ by the formula $\alpha(x) = [\chi_{\langle x \rangle}, 1_{\langle x \rangle}]$, where $[\cdot, \cdot]$ denotes the character inner product. We introduce the notation $\hat{\chi}$ for this function.

Theorem 1. Let χ be any character of G. Then $e\hat{\chi}$ is a generalized character, where e is the exponent of G and $\hat{\chi}(x) = [\chi_{\langle \chi \rangle}, 1_{\langle \chi \rangle}]$ for $x \in G$.

In order to prove that $e\hat{\chi}$ is a generalized character of G, it suffices by Brauer's characterization of characters to show that the restriction $(e\hat{\chi})_N$ is a generalized character of N for every nilpotent subgroup $N \subseteq G$. Because

Received by the editors September 19, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20C15.

Research partially supported by a grant from the National Science Foundation.

 $(\hat{\chi})_N = \hat{\chi}_N$ and the exponent of N divides that of G, it is enough to prove Theorem 1 in the case that G is nilpotent.

We need to show (when G is nilpotent) that $e[\hat{\chi}, \zeta] \in \mathbb{Z}$ for all irreducible characters ζ of N. In order to make our inductive proof of this work, we need to generalize it.

Proposition 2. Let G be nilpotent and suppose χ is a character of G and ζ is a generalized character. Then $m[\hat{\chi}, \zeta] \in \mathbb{Z}$, where m is any positive integer such that $\zeta(x) = 0$ whenever $x^m \neq 1$.

In particular, the condition that $\zeta(x) = 0$ whenever $x^m \neq 1$ is vacuously satisfied if m = e, the exponent of G. Proposition 2, therefore, includes the nilpotent group case of Theorem 1 and so implies the general case by Brauer's theorem.

2. Proofs

If χ is a complex-valued function on an arbitrary finite group G and n is a positive integer, we write $\chi^{(n)}$ to denote the function on G defined by $\chi^{(n)}(x) = \chi(x^n)$. It is well known that if χ is a character (or a generalized character) of G, then $\chi^{(n)}$ is a generalized character. (See, for instance, [1, Problem 4.7].)

Somewhat analogously, we define $\chi^{(1/n)}$ by the formula

$$\chi^{(1/n)}(x) = \sum_{\substack{y \in G \\ y^n = x}} \chi(y).$$

Lemma 3. If χ is a generalized character of G and n is a positive integer, then $\chi^{(1/n)}$ is a generalized character.

Proof. Let $\zeta \in Irr(G)$. Then

$$[\chi^{(1/n)}, \zeta] = \frac{1}{|G|} \sum_{x \in G} \chi^{(1/n)}(x) \overline{\zeta(x)}$$
$$= \frac{1}{|G|} \sum_{x \in G} \sum_{\substack{y \in G \\ y^n = x}} \chi(y) \overline{\zeta(x)}$$
$$= \frac{1}{|G|} \sum_{y \in G} \chi(y) \overline{\zeta(y^n)}$$
$$= [\chi, \zeta^{(n)}].$$

Since $\zeta^{(n)}$ is a generalized character, we have $[\chi, \zeta^{(n)}] \in \mathbb{Z}$ and it follows that $\chi^{(1/n)}$ is a generalized character.

We need one further lemma for our proof of Proposition 2.

Lemma 4. Let $N \triangleleft G$ with G/N cyclic, and suppose χ is a generalized character of G such that $\chi(x) = 0$ for all $x \in G - N$. Then $\chi = \psi^G$ for some generalized character ψ of N.

Proof. Let $C = \operatorname{Irr}(G/N)$ so that C may be viewed as a group of linear characters of G and C acts on $\operatorname{Irr}(G)$ by multiplication. If $\lambda \in C$, then $\chi = \chi \lambda$ since $\chi(x) = 0$ if $\lambda(x) \neq 1$. It follows that χ is a Z-linear combination of sums of orbits of the action of C on $\operatorname{Irr}(G)$ and so it suffices to show that each orbit sum is induced from some character of N.

Let $\xi \in \operatorname{Irr}(G)$ and let η be the sum of the *C*-orbit containing ξ . If α is any irreducible constituent of ξ_N , we will complete the proof by showing that $\alpha^G = \eta$.

If $x \in G - N$, we can choose $\lambda \in C$ with $\lambda(x) \neq 1$. Since η is a C-orbit sum, we have $\eta \lambda = \eta$ and so $\eta(x) = 0$. Also, $\alpha^G(x) = 0$ and so η and α^G agree on G - N.

Each irreducible constituent of η has the form $\xi\mu$ for some $\mu \in C$. Since $\mu_N = 1_N$, we have $(\xi\mu)_N = \xi_N$ and thus η_N is a multiple of ξ_N which is a multiple of the sum of the *G*-orbit of α . Also, $(\alpha^G)_N$ is a multiple of the *G*-orbit sum of α and thus, to show that η and α^G agree on *N* (and thereby complete the proof), it suffices to compare degrees and show that $\eta(1) = \alpha^G(1)$.

Let $B \subseteq C$ be the stabilizer of ξ . Then $\eta(1) = |C: B|\xi(1)$. If $T \subseteq G$ is the stabilizer of α , then $\xi = \beta^G$ where $\beta \in \operatorname{Irr}(T)$ and β_N is a multiple of α . Since T/N is cyclic, we have $\beta_N = \alpha$ and so $\xi(1) = |G: T|\alpha(1)$ and $\eta(1) = |C: B||G: T|\alpha(1)$. Of course, $\alpha^G(1) = |G: N|\alpha(1)$ and so we must show that |G: N| = |G: T||C: B|. It suffices, therefore, to prove that |T: N| = |C: B|.

We claim that $B = \operatorname{Irr}(G/T)$. This would give |C: B| = |C|/|B| = |G: N|/|G: T| = |T: N|, as required. To prove the claim, let $\mu \in B$. Then

$$\boldsymbol{\xi} = \boldsymbol{\xi}\boldsymbol{\mu} = \boldsymbol{\beta}^{G}\boldsymbol{\mu} = (\boldsymbol{\beta}\boldsymbol{\mu}_{T})^{G}$$

and $(\beta \mu_T)_N = \beta_N = \alpha$. However, β is the unique character of T lying over α which induces ξ , and thus $\beta \mu_T = \beta$. Since β_N is irreducible and $N \subseteq \ker(\mu_T)$, it follows that $\mu_T = 1_T$. (Use [1, 6.17], for instance). Thus $\mu \in \operatorname{Irr}(G/T)$ as required.

Conversely, suppose $\mu \in Irr(G/T)$. Then

$$\xi \mu = \beta^G \mu = (\beta \mu_T)^G = \beta^G = \xi$$

and so $\mu \in B$. The proof is now complete.

Proof of Proposition 2. The map $\chi \mapsto \hat{\chi}$ is additive and so it is no loss to assume that χ is an irreducible character. We proceed by induction on $\chi(1)$.

First, suppose $\chi(1) = 1$ so that χ is linear. Writing $K = \ker(\chi)$, we see that $\hat{\chi}(x) = 0$ if $x \notin K$ and $\hat{\chi}(x) = 1$ if $x \in K$. Let $N = \{g \in G | g^m \in K\}$, the preimage in G of the set of elements in G/K with order dividing m. Since G/K is cyclic, it follows that N is a subgroup and |N/K| divides m. Thus

 $m\hat{\chi}_N$ is a multiple of $|N/K|\hat{\chi}_N = (1_K)^N$. In particular, $m\hat{\chi}_N$ is a character of N.

If $x \in G - N$, then $x^m \notin K$ and so $x^m \neq 1$ and $\zeta(x) = 0$ by hypothesis. Since G/N is cyclic, Lemma 4 tells us that $\zeta = \eta^G$ some generalized character η of N. Then $m[\hat{\chi}, \zeta] = [m\hat{\chi}, \eta^G] = [m\hat{\chi}_N, \eta]$ and this lies in Z since $m\hat{\chi}_N$ is a character.

Now assume $\chi(1) > 1$. The nilpotence of G guarantees that we can write $\chi = \psi^G$, where $\psi \in \operatorname{Irr}(H)$ and $H \triangleleft G$ has prime index p. Then $\chi_H = \psi_1 + \psi_2 + \cdots + \psi_p$ where $\psi_1 = \psi$ and the ψ_i constitute an orbit of the action of G on $\operatorname{Irr}(H)$. Thus $\hat{\chi}_H = \sum_i \hat{\psi}_i$ and the $\hat{\psi}_i$ are all G-conjugate. We will also need to be able to compute $\hat{\chi}(x)$ if $x \in G - H$; we work with modules to do this.

Let V be a CG-module affording χ . Then $V = V_1 + V_2 + \dots + V_p$, where the V_i are CH-submodules of V affording the characters $\psi_i \in Irr(H)$ and these submodules are permuted by G. In fact, if $x \in G - H$, then $\langle x \rangle$ permutes the V_i transitively and we may assume x carries V_i to V_{i+1} for $1 \le i < p$ and x carries V_p to V_1 .

Holding $x \in G - H$ fixed, we can define a map $w \mapsto \tilde{w}$ from V_1 into V by setting $\tilde{w} = w + wx + wx^2 + \dots + wx^{p-1}$. This is a C-linear transformation which is injective since $\tilde{w} \neq 0$ when $w \neq 0$ because $wx^i \in V_{i+1}$ for $0 \leq i \leq p-1$ and the sum $\sum V_i$ is direct. If w is a fixed point of x^p in V_1 , then clearly \tilde{w} is fixed by x. Conversely, if $v \in V$ is a fixed point of x, then writing $v = v_1 + v_2 + \dots + v_p$ with $v_i \in V_i$ and comparing the projections of the equal vectors v and vx into the V_i , we see that $v_1x = v_2$, $v_2x = v_3, \dots, v_{p-1}x = v_p$ and $v_px = v_1$. It follows that $v = \tilde{v}_1$ and that v_1 is fixed by x^p .

We have proved that the map $w \mapsto \hat{w}$ defines an isomorphism of the fixedpoint space of x^p in V_1 onto the fixed-point space of x in V. This shows that $\hat{\chi}(x) = \hat{\psi}(x^p)$ for all $x \in G - H$.

Now

$$m[\hat{\chi}, \zeta] = \frac{m}{|G|} \sum_{x \in G} \hat{\chi}(x) \overline{\zeta(x)} = \frac{m}{|G|} S_1 + \frac{m}{|G|} S_2$$

where S_1 is the sum for $x \in H$ and S_2 is the sum for $x \in G - H$. When $x \in H$, we have $\hat{\chi}(x) = \sum_i \hat{\psi}_i(x)$ and so

$$S_1 = |H| \left[\left(\sum_i \hat{\psi}_i \right), \zeta_H \right] = p |H| [\hat{\psi}, \zeta_H]$$

since all $[\hat{\psi}, \zeta_H]$ are equal. (This is because the $\hat{\psi}_i$ are G-conjugate). Thus $(m/|G|)S_1 = m[\hat{\psi}, \zeta_H]$ and this lies in Z by the inductive hypothesis since $\psi(1) < \chi(1)$.

To evaluate S_2 , define $\xi(y) = \sum_{x \in G-H, x^p = y} \zeta(x)$. Then

$$S_{2} = \sum_{x \in G-H} \hat{\chi}(x) \overline{\zeta(x)}$$
$$= \sum_{x \in G-H} \hat{\psi}(x^{p}) \overline{\zeta(x)}$$
$$= \sum_{y \in H} \hat{\psi}(y) \overline{\xi(y)}$$
$$= |H| [\hat{\psi}, \xi]$$

and so $(m/|G|)S_2 = (m/p)[\hat{\psi}, \xi]$ and we need to show that this lies in Z.

If $x \in G - H$ and $x^p = y \in H$, then p divides the order of x. If $p \nmid m$, then $x^m \neq 1$ and so $\zeta(x) = 0$ by hypothesis. It follows that ξ is identically zero if $p \nmid m$ and there is nothing to prove in this case. Suppose, therefore, that p|m. If $x^m = 1$ and $x^p = y$, then $y^{(m/p)} = 1$. Therefore, if $y^{(m/p)} \neq 1$, we have $\zeta(x) = 0$ for all x with $x^p = y$ and so $\xi(y) = 0$.

Now

$$\xi(y) = \sum_{\substack{x \in G \\ x^{\rho} = y}} \zeta(x) - \sum_{\substack{x \in H \\ x^{\rho} = y}} \zeta(x)$$

and so $\xi = (\zeta^{(1/p)})_H - (\zeta_H)^{(1/p)}$ and this is a generalized character by Lemma 3. Since $\xi(y) = 0$ if $y^{(m/p)} \neq 1$, the inductive hypothesis yields $(m/p)[\hat{\psi}, \xi] \in \mathbb{Z}$, as required.

The proof of our main result, Theorem 1, is now complete.

3. FURTHER REMARKS

If we drop the nilpotence hypothesis from Proposition 2, we get a statement properly stornger than Theorem 1. Is this statement true?

Theorem 5. Let χ be a character of an arbitrary finite group G and let ζ be a generalized character of G with the property that $\zeta(x) = 0$ whenever $x^m \neq 1$ for some fixed positive integer m. Then $m[\hat{\chi}, \zeta] \in \mathbb{Z}$.

Proof. By Brauer's theorem on induced characters, the principal character 1_G can be written as a sum of induced generalized characters α_i^G where the α_i are characters of certain nilpotent subgroups $N_i \subseteq G$. Then

$$\zeta = \zeta \mathbf{1}_G = \sum_i \zeta(\alpha_i)^G = \sum_i (\zeta_{N_i} \alpha_i)^G.$$

Thus

$$m[\hat{\boldsymbol{\chi}}, \boldsymbol{\zeta}] = \sum m[\hat{\boldsymbol{\chi}}, (\boldsymbol{\zeta}_{N_i} \alpha_i)^G] = \sum_i m[\hat{\boldsymbol{\chi}}_{N_i}, \boldsymbol{\zeta}_{N_i} \alpha_i]$$

and this is a sum of integers by Proposition 2, since the $\zeta_{N_i} \alpha_i$ are generalized characters which vanish on elements $x \in N_i$ such that $x^m \neq 1$.

We began this paper with the observation that if α is any Z-valued function on G, constant on rational classes, then $|G|\alpha$ is a generalized character; equivalently $|G|[\alpha, \zeta] \in \mathbb{Z}$ for each $\zeta \in Irr(G)$. The point of Theorem 1 is that in certain situations, for particular α , the coefficient |G| can be reduced uniformly; i.e. for all ζ . It is true (and quite trivial) that for particular ζ we can reduce the coefficient for all α . We conclude with this observation.

Theorem 6. Let α be Z-valued and constant on rational-classes of G. Then

$$\frac{|G|}{\zeta(1)}[\alpha\,,\zeta]\in\mathbf{Z}$$

for all $\zeta \in Irr(G)$.

Proof. Let x_1, x_2, \ldots, x_k be representatives for the conjugacy classes K_1, \ldots, K_k of G. Then

$$\frac{|G|}{\zeta(1)}[\alpha, \zeta] = \sum_{x \in G} \alpha(x) \frac{\zeta(x)}{\zeta(1)}$$
$$= \sum_{i=1}^{k} \alpha(x) \frac{\overline{\zeta(x_i)}}{\zeta(1)} |K_i|$$

and this is an algebraic integer since $\zeta(x_i)|K_i|/\zeta(1)$ is integral. Also, $(|G|/\zeta(1))[\alpha, \zeta]$ is rational since $|G|[\alpha, \zeta] \in \mathbb{Z}$. The result follows.

In view of Theorems 1 and 6, one might guess that if $\chi, \zeta \in Irr(G)$, then $(e/\zeta(1))[\hat{\chi}, \zeta] \in \mathbb{Z}$, where *e* is the exponent of *G*. This is false since if *G* has order p^3 and exponent *p* (where *p* is prime), then $[\hat{\chi}, \chi] = 1/p$ for $\chi \in Irr(G)$ with $\chi(1) = p$.

References

1. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706