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THE FIXED-POINT-SPACE

DIMENSION FUNCTION FOR

A FINITE GROUP REPRESENTATION

I. M. ISAACS

(Communicated by Warren J. Wong)

Abstract. Given a complex representation of a finite group G , construct the

integer valued function n on G by setting n(g) to be the dimension of the

fixed-point-space of g in the module corresponding to the given representation.

Usually, r* is not a generalized character of G and for trivial reasons \G\a

is always a generalized character. The main result of this paper is that en is

always a generalized character, where e is the exponent of G .

1. Introduction and statement of results

Let G be a finite group and let a be a Z-valued function on G which is

constant on rational-classes, (i.e. a(x) = a(y) if the cyclic groups (x) and

(y) are G-conjugate.) Although a need not be a generalized character (i.e. a

Z-linear combination of Irr(G) ), it is always true that \G\a is a generalized

character. (This follows immediately from the observation that for each x £

Irr(G), the sum of the values over each rational-class lies in Z.)

For certain natural functions, a, a multiplier m smaller than \G\ is sufficient

to make ma a generalized character. Our main result is that if a(x) denotes

the dimension of the fixed-point space of x in some C-representation of G,

then ea is a generalized character, where e is the exponent of G.

If 3? is a C-representation of G affording the character x , then the fixed-

point-space dimension function a associated with 2f can be computed from

X by the formula a(x) - [x,x), l,v>], where [•', •] denotes the character inner

product. We introduce the notation % f°r this function.

Theorem 1. Let x be any character of G. Then ex is a generalized character,

where e is the exponent of G and x(x) = fjr, . , 1, .] for x e G.

In order to prove that ex is a generalized character of G, it suffices by

Brauer's charaterization of characters to show that the restriction (ex)N is a

generalized character of N for every nilpotent subgroup N ç G.   Because
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(x)n = %n and the exponent of N divides that of G, it is enough to prove

Theorem 1 in the case that G is nilpotent.

We need to show (when G is nilpotent) that e[x ,QeZ for all irreducible

characters £ of N. In order to make our inductive proof of this work, we need

to generalize it.

Proposition 2. Let G be nilpotent and suppose x is a character of G and Ç

is a generalized character. Then m[x,QeZ, where m is any positive integer

such that C(x) = 0 whenever xm ^ 1.

In particular, the condition that Ç(x) = 0 whenever x" / 1 is vacuously

satisfied if m = e, the exponent of G. Proposition 2, therefore, includes the

nilpotent group case of Theorem 1 and so implies the general case by Brauer's

theorem.

2. Proofs

If x is a complex-valued function on an arbitrary finite group G and n

is a positive integer, we write x to denote the function on G defined by

X (x) — x(x") ■ It is well known that if x is a character (or a generalized

character) of G, then x is a generalized character. (See, for instance, [1,

Problem 4.7].)

Somewhat analogously, we define x        by the formula

x(lln\x)= £züO.

vea
y"=x

Lemma 3. If x is a generalized character of G and n is a positive integer, then

X        is a generalized character.

Proof. Let C 6 Irr(G). Then

[x{l,"],c] = ^E^/n)M^
\G

1     ' x€G y€G
y"=x

1     ' }'€G

= [xX(n)l

Since Í     is a generalized character, we have [x, Ç   ] e Z and it follows that

X{       is a generalized character.    ■

We need one further lemma for our proof of Proposition 2.
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Lemma 4. Let N<G with G/N cyclic, and suppose % is a generalized character

of G such that x(x) = 0 for all x e G-N. Then x = W for some generalized

character ip of N.

Proof. Let C = lrr(G/N) so that C may be viewed as a group of linear char-

acters of G and C acts on Irr(G) by multiplication. If X e C, then X — X^

since x(x) — 0 if X(x) / 1 . It follows that x is a Z-linear combination of

sums of orbits of the action of C on Irr(G) and so it suffices to show that each

orbit sum is induced from some character of N.

Let Ç e Irr(G) and let t] be the sum of the C-orbit containing £. If a is

any irreducible constituent of ÇN , we will complete the proof by showing that

a° = X] .

If x e G - N, we can choose X e C with X(x) / 1 . Since n is a C-orbit
c c

sum, we have rjX = n and so n(x) — 0. Also, a (x) = 0 and so n and a

agree on G - N .

Each irreducible constituent of n has the form £,p for some p e C. Since

pN — lN, we have (£,p)N = £N and thus nN is a multiple of iN which is a

multiple of the sum of the G-orbit of a. Also, (a )N is a multiple of the

G-orbit sum of a and thus, to show that r¡ and a agree on N (and thereby

complete the proof), it suffices to compare degrees and show that n( 1 ) = a ( 1).

Let ÄCCbe the stabilizer of £ . Then n(l) = \C: fi|{(l). If T C G is the

stabilizer of a, then £ - ß where ß e lrr(T) and ßN is a multiple of a.

Since T/TV is cyclic, we have ßN = a and so £(l) = \G: Tja(l) and n(l) =

\G: B\\G: T\a(l). Of course, a (1) = \G: N\a(l) and so we must show that

\G: N\ = \G: T\\C: B\. It suffices, therefore, to prove that \T: N\ = \C: B\.

We claim that B = lrr(G/T). This would give \C: B\ = |C|/|Ä| = ¡G: N\/

\G: T\ = \T: N\, as required. To prove the claim, let p e B . Then

{ = Çp = ßGp = (ßpTf

and (ßpT)N — ßN — a. However, ß is the unique character of T lying

over a which induces £, and thus ßpT - ß. Since ßN is irreducible and

N ç ker(pT), it follows that pT = lT. (Use [1, 6.17], for instance). Thus

p e \rr(G/T) as required.

Conversely, suppose p e lrr(G/T). Then

Zp = ßGp = (ßpT)G = ßG = l;

and so p e B . The proof is now complete.    ■

Proof of Proposition 2. The map x l_> X is additive and so it is no loss to assume

that x is an irreducible character. We proceed by induction on #(1).

First, suppose #(1) = 1 so that x is linear. Writing K = ker(^), we see that

X(x) = 0 if x i K and x(x) =1 if x e K. Let TV = {g e G\gm E A:}, the

preimage in G of the set of elements in G/K with order dividing m. Since

G/K is cyclic, it follows that N is a subgroup and l-iV/A] divides m . Thus
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mxN is a multiple of \N/K\xN
N.

(lK)   . In particular, m%N is a character of

If x e G - N, then x'" £ K and so xm ^ 1 and Ç(x) — 0 by hypothesis.

Since G/N is cyclic, Lemma 4 tells us that Ç = n some generalized character

n of N. Then m[x , Q - [mx , t] ] = \m%N , tj] and this lies in Z since m%N

is a character.

Now assume ^(1) > 1 . The nilpotence of G guarantees that we can write

X = y/   , where  ip e lrr(H) and H < G has prime index p.   Then xH =

y/x + y/2-\-\- iff   where \px — y/ and the y/¡ constitute an orbit of the action

of G on lrr(H). Thus xH = J2¡ ¥¡ and the \¡/¡ are all G-conjugate. We will

also need to be able to compute x(x) if x e G - H ; we work with modules to

do this.

vl + v2 + - ■ + V , where theLet V be a CG-module affording x ■ Then V

V¡ are C/7-submodules of V affording the characters ip. e lrr(H) and these

submodules are permuted by G. In fact, if x e G - H, then (x) permutes the

V¡ transitively and we may assume x carries V¡ to Vj+l for I < i <p and x

carries V   to Vx .

Holding x e G - H fixed, we can define a map w
2   . .   ...^P-I

w from Vx  into V by

setting w — w + wx + wx" + ■■■ + wxy ' . This is a C-linear transformation

which is injective since w ^ 0 when w ^ 0 because wx1 e Vj+X for 0 < i <

p - 1 and the sum J2 V¡ is direct. If w is a fixed point of xp in Vx , then

clearly w is fixed by x. Conversely, if v e V is a fixed point of x, then

writing v = vx + v2 + ■ ■ ■ + v with v¡ e Vi and comparing the projections

of the equal vectors v and vx into the K, we see that vxx = v2, v2x =

f3, ... ,vp_xx - vp and vpx - vx . It follows that v - v{ and that vx is fixed

by xp.

We have proved that the map w i-+ w defines an isomorphism of the fixed-

point space of xp in Vx onto the fixed-point space of x in V. This shows

that x[x) - ip(xp) for all xeG-H.

Now

m x-^ .,  .——r      m „       m
m[x,C] J2x(xK(x) = -sx +

x£G
3\S^

where Sx   is the sum for x e H and S2  is the sum for x e G

x e H, we have x(x) = £,- ¥¡(x) and so

H.  When

S, = \H\ E^/).Ci = p|^|[^,C„]

since all [^,C//] are equal.  (This is because the  ^  are G-conjugate).  Thus

(m/IGDS, — m[ip,ÇH]  and this lies in  Z by the inductive hypothesis since
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To evaluate S2, define Ç(y) = E.veG-//,x"=v £(■*) • Then

S2=    E   X(x)äx~)
xeG-H

= Yl v^p)W)
x€G-H

= E viyW)
y€H

= \H\[V,t]

and so (m/\G\)S7 — (m/p)[y> ,£] and we need to show that this lies in Z.

If x e G - H and xp = y e H, then p divides the order of x . If p \ m ,

then xm ^ 1 and so (,(x) = 0 by hypothesis. It follows that £ is identically

zero if p f m and there is nothing to prove in this case. Suppose, therefore,

that p\m. If x'" = 1 and xp = y, then y^"7"' = 1 . Therefore, if y(mlp) ¿ 1 ,

we have Ç(x) = 0 for all x with xp = y and so Ç(y) = 0.

Now

if» = E cc*) - E «*)
xeG .ve«
x',=y x'=y

and so £ = (£l "*')H - (Cw) and this is a generalzied character by Lemma 3.

Since Ç(y) — 0 if y[m'p) ¿ 1, the inductive hypothesis yields (m/p)[y/ ,Ç] e Z,

as required.    ■

The proof of our main result, Theorem 1, is now complete.

3. Further remarks

If we drop the nilpotence hypothesis from Proposition 2, we get a statement

properly stornger than Theorem 1. Is this statement true?

Theorems. Let x be a character of an arbitrary finite group G and let Ç be a

generalized character of G with the property that Ç(x) = 0 whenever xm / 1

for some fixed positive integer m . Then m[x, C] e Z.

Proof. By Brauer's theorem on induced characters, the principal character lG

can be written as a sum of induced generalized characters a¡ where the a. are

characters of certain nilpotent subgroups TV ç G. Then

í = CiG = £CK)G' = :T(^)c-

I I

Thus

m[x , C] = E mtt ' (£/v,a,)G] = E mti.\, ' Civ,4»/]
i

and this is a sum of integers by Proposition 2, since the ÇN a¡ are generalized

characters which vanish on elements x e Ni such that x"1 ± 1 .    ■
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We began this paper with the observation that if a is any Z-valued func-

tion on G, constant on rational classes, then \G\a is a generalized character;

equivalently |G|[c*,Ç] e Z for each Ç e Irr(G). The point of Theorem 1 is

that in certain situations, for particular a, the coefficient \G\ can be reduced

uniformly; i.e. for all Ç. It is true (and quite trivial) that for particular Ç we

can reduce the coefficient for all a . We conclude with this observation.

Theorem 6. Let a be Z-valued and constant on rational-classes of G. Then

^y[«,C]eZ

for all C e Irr(G).

Proof. Let xx ,x2, ... ,xk be representatives for the conjugacy classes Kx , ... ,

Kk of G. Then

\G\ r      n       V^    /   \£(x)

= 2>(*)^77yl*l

and this  is  an  algebraic  integer since   Ç(xi)\Ki\/Ç(l)   is  integral.     Also,

(|G|/Ç(1))[«,C] is rational since |G|[a,£] e Z. The result follows.    ■

In view of Theorems 1 and 6, one might guess that if x, C e Irr(G), then

(e/C(l))[X, C] £ Z, where e is the exponent of G. This is false since if G has

order p and exponent p (where p is prime), then [x ,x]= \/P f°r X e Irr(G)

with *(1) =/?.
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