THE FIXED-POINT-SPACE DIMENSION FUNCTION FOR A FINITE GROUP REPRESENTATION

I. M. ISAACS
(Communicated by Warren J. Wong)

Abstract

Given a complex representation of a finite group G, construct the integer valued function α on G by setting $\alpha(g)$ to be the dimension of the fixed-point-space of g in the module corresponding to the given representation. Usually, α is not a generalized character of G and for trivial reasons $|G| \alpha$ is always a generalized character. The main result of this paper is that e_{c} is always a generalized character, where e is the exponent of G.

1. Introduction and statement of results

Let G be a finite group and let α be a \mathbf{Z}-valued function on G which is constant on rational-classes, (i.e. $\alpha(x)=\alpha(y)$ if the cyclic groups $\langle x\rangle$ and $\langle y\rangle$ are G-conjugate.) Although α need not be a generalized character (i.e. a Z-linear combination of $\operatorname{Irr}(G)$), it is always true that $|G| \alpha$ is a generalized character. (This follows immediately from the observation that for each $\chi \in$ $\operatorname{Irr}(G)$, the sum of the values over each rational-class lies in \mathbf{Z}.)

For certain natural functions, α, a multiplier m smaller than $|G|$ is sufficient to make $m \alpha$ a generalized character. Our main result is that if $\alpha(x)$ denotes the dimension of the fixed-point space of x in some \mathbf{C}-representation of G, then $e \alpha$ is a generalized character, where e is the exponent of G.

If \mathscr{X} is a C-representation of G affording the character χ, then the fixed-point-space dimension function α associated with \mathscr{X} can be computed from χ by the formula $\alpha(x)=\left[\chi_{\langle x\rangle}, 1_{\langle x\rangle}\right]$, where $[\cdot, \cdot]$ denotes the character inner product. We introduce the notation $\hat{\chi}$ for this function.

Theorem 1. Let χ be any character of G. Then $e \hat{\chi}$ is a generalized character, where e is the exponent of G and $\hat{\chi}(x)=\left[\chi_{\langle x\rangle}, 1_{\langle x\rangle}\right]$ for $x \in G$.

In order to prove that $e \hat{\chi}$ is a generalized character of G, it suffices by Brauer's charaterization of characters to show that the restriction $(e \hat{\chi})_{N}$ is a generalized character of N for every nilpotent subgroup $N \subseteq G$. Because

[^0]$(\hat{\chi})_{N}=\hat{\chi}_{N}$ and the exponent of N divides that of G, it is enough to prove Theorem 1 in the case that G is nilpotent.

We need to show (when G is nilpotent) that $e[\hat{\chi}, \zeta] \in \mathbf{Z}$ for all irreducible characters ζ of N. In order to make our inductive proof of this work, we need to generalize it.

Proposition 2. Let G be nilpotent and suppose χ is a character of G and ζ is a generalized character. Then $m[\hat{\chi}, \zeta] \in \mathbf{Z}$, where m is any positive integer such that $\zeta(x)=0$ whenever $x^{m} \neq 1$.

In particular, the condition that $\zeta(x)=0$ whenever $x^{m} \neq 1$ is vacuously satisfied if $m=e$, the exponent of G. Proposition 2, therefore, includes the nilpotent group case of Theorem 1 and so implies the general case by Brauer's theorem.

2. Proofs

If χ is a complex-valued function on an arbitrary finite group G and n is a positive integer, we write $\chi^{(n)}$ to denote the function on G defined by $\chi^{(n)}(x)=\chi\left(x^{n}\right)$. It is well known that if χ is a character (or a generalized character) of G, then $\chi^{(n)}$ is a generalized character. (See, for instance, [1, Problem 4.7].)

Somewhat analogously, we define $\chi^{(1 / n)}$ by the formula

$$
\chi^{(1 / n)}(x)=\sum_{\substack{y \in G \\ y^{n}=x}} \chi(y) .
$$

Lemma 3. If χ is a generalized character of G and n is a positive integer, then $\chi^{(1 / n)}$ is a generalized character.
Proof. Let $\zeta \in \operatorname{Irr}(G)$. Then

$$
\begin{aligned}
{\left[\chi^{(1 / n)}, \zeta\right] } & =\frac{1}{|G|} \sum_{x \in G} \chi^{(1 / n)}(x) \overline{\zeta(x)} \\
& =\frac{1}{|G|} \sum_{x \in G} \sum_{\substack{y \in G \\
y^{n}=x}} \chi(y) \overline{\zeta(x)} \\
& =\frac{1}{|G|} \sum_{y \in G} \chi(y) \overline{\zeta\left(y^{n}\right)} \\
& =\left[\chi, \zeta^{(n)}\right] .
\end{aligned}
$$

Since $\zeta^{(n)}$ is a generalized character, we have $\left[\chi, \zeta^{(n)}\right] \in \mathbf{Z}$ and it follows that $\chi^{(1 / n)}$ is a generalized character.

We need one further lemma for our proof of Proposition 2.

Lemma 4. Let $N \triangleleft G$ with G / N cyclic, and suppose χ is a generalized character of G such that $\chi(x)=0$ for all $x \in G-N$. Then $\chi=\psi^{G}$ for some generalized character ψ of N.
Proof. Let $C=\operatorname{Irr}(G / N)$ so that C may be viewed as a group of linear characters of G and C acts on $\operatorname{Irr}(G)$ by multiplication. If $\lambda \in C$, then $\chi=\chi \lambda$ since $\chi(x)=0$ if $\lambda(x) \neq 1$. It follows that χ is a Z-linear combination of sums of orbits of the action of C on $\operatorname{Irr}(G)$ and so it suffices to show that each orbit sum is induced from some character of N.

Let $\xi \in \operatorname{Irr}(G)$ and let η be the sum of the C-orbit containing ξ. If α is any irreducible constituent of ξ_{N}, we will complete the proof by showing that $\alpha^{G}=\eta$.

If $x \in G-N$, we can choose $\lambda \in C$ with $\lambda(x) \neq 1$. Since η is a C-orbit sum, we have $\eta \lambda=\eta$ and so $\eta(x)=0$. Also, $\alpha(x)=0$ and so η and α^{G} agree on $G-N$.

Each irreducible constituent of η has the form $\xi \mu$ for some $\mu \in C$. Since $\mu_{N}=1_{N}$, we have $(\xi \mu)_{N}=\xi_{N}$ and thus η_{N} is a multiple of ξ_{N} which is a multiple of the sum of the G-orbit of α. Also, $\left(\alpha^{G}\right)_{N}$ is a multiple of the G-orbit sum of α and thus, to show that η and α^{G} agree on N (and thereby complete the proof), it suffices to compare degrees and show that $\eta(1)=\alpha^{G}(1)$.

Let $B \subseteq C$ be the stabilizer of ξ. Then $\eta(1)=|C: B| \xi(1)$. If $T \subseteq G$ is the stabilizer of α, then $\xi=\beta^{G}$ where $\beta \in \operatorname{Irr}(T)$ and β_{N} is a multiple of α. Since T / N is cyclic, we have $\beta_{N}=\alpha$ and so $\xi(1)=|G: T| \alpha(1)$ and $\eta(1)=$ $|C: B \| G: T| \alpha(1)$. Of course, $\alpha^{G}(1)=|G: N| \alpha(1)$ and so we must show that $|G: N|=|G: T||C: B|$. It suffices, therefore, to prove that $|T: N|=|C: B|$.

We claim that $B=\operatorname{Irr}(G / T)$. This would give $|C: B|=|C| /|B|=|G: N| /$ $|G: T|=|T: N|$, as required. To prove the claim, let $\mu \in B$. Then

$$
\xi=\xi \mu=\beta^{G} \mu=\left(\beta \mu_{T}\right)^{G}
$$

and $\left(\beta \mu_{T}\right)_{N}=\beta_{N}=\alpha$. However, β is the unique character of T lying over α which induces ξ, and thus $\beta \mu_{T}=\beta$. Since β_{N} is irreducible and $N \subseteq \operatorname{ker}\left(\mu_{T}\right)$, it follows that $\mu_{T}=1_{T}$. (Use [1, 6.17], for instance). Thus $\mu \in \operatorname{Irr}(G / T)$ as required.

Conversely, suppose $\mu \in \operatorname{Irr}(G / T)$. Then

$$
\xi \mu=\beta^{G} \mu=\left(\beta \mu_{T}\right)^{G}=\beta^{G}=\xi
$$

and so $\mu \in B$. The proof is now complete.
Proof of Proposition 2. The map $\chi \mapsto \hat{\chi}$ is additive and so it is no loss to assume that χ is an irreducible character. We proceed by induction on $\chi(1)$.

First, suppose $\chi(1)=1$ so that χ is linear. Writing $K=\operatorname{ker}(\chi)$, we see that $\hat{\chi}(x)=0$ if $x \notin K$ and $\hat{\chi}(x)=1$ if $x \in K$. Let $N=\left\{g \in G \mid g^{m} \in K\right\}$, the preimage in G of the set of elements in G / K with order dividing m. Since G / K is cyclic, it follows that N is a subgroup and $|N / K|$ divides m. Thus
$m \hat{\chi}_{N}$ is a multiple of $|N / K| \hat{\chi}_{N}=\left(1_{K}\right)^{N}$. In particular, $m \hat{\chi}_{N}$ is a character of N.

If $x \in G-N$, then $x^{m} \notin K$ and so $x^{m} \neq 1$ and $\zeta(x)=0$ by hypothesis. Since G / N is cyclic, Lemma 4 tells us that $\zeta=\eta^{G}$ some generalized character η of N. Then $m[\hat{\chi}, \zeta]=\left[m \hat{\chi}, \eta^{G}\right]=\left[m \hat{\chi}_{N}, \eta\right]$ and this lies in \mathbf{Z} since $m \hat{\chi}_{N}$ is a character.

Now assume $\chi(1)>1$. The nilpotence of G guarantees that we can write $\chi=\psi^{G}$, where $\psi \in \operatorname{Irr}(H)$ and $H \triangleleft G$ has prime index p. Then $\chi_{H}=$ $\psi_{1}+\psi_{2}+\cdots+\psi_{p}$ where $\psi_{1}=\psi$ and the ψ_{i} constitute an orbit of the action of G on $\operatorname{Irr}(H)$. Thus $\hat{\chi}_{H}=\sum_{i} \hat{\psi}_{i}$ and the $\hat{\psi}_{i}$ are all G-conjugate. We will also need to be able to compute $\hat{\chi}(x)$ if $x \in G-H$; we work with modules to do this.

Let V be a $\mathbf{C} G$-module affording χ. Then $V=V_{1}+V_{2}+\cdots+V_{p}$, where the V_{i} are $\mathbf{C H}$-submodules of V affording the characters $\psi_{i} \in \operatorname{Irr}(H)$ and these submodules are permuted by G. In fact, if $x \in G-H$, then $\langle x\rangle$ permutes the V_{i} transitively and we may assume x carries V_{i} to V_{i+1} for $1 \leq i<p$ and x carries V_{p} to V_{1}.

Holding $x \in G-H$ fixed, we can define a map $w \mapsto \tilde{w}$ from V_{1} into V by setting $\tilde{w}=w+w x+w x^{2}+\cdots+w x^{p-1}$. This is a C-linear transformation which is injective since $\tilde{w} \neq 0$ when $w \neq 0$ because $w x^{i} \in V_{i+1}$ for $0 \leq i \leq$ $p-1$ and the sum $\sum V_{i}$ is direct. If w is a fixed point of x^{p} in V_{1}, then clearly \tilde{w} is fixed by x. Conversely, if $v \in V$ is a fixed point of x, then writing $v=v_{1}+v_{2}+\cdots+v_{p}$ with $v_{i} \in V_{i}$ and comparing the projections of the equal vectors v and $v x$ into the V_{i}, we see that $v_{1} x=v_{2}, v_{2} x=$ $v_{3}, \ldots, v_{p-1} x=v_{p}$ and $v_{p} x=v_{1}$. It follows that $v=\tilde{v}_{1}$ and that v_{1} is fixed by x^{p}.

We have proved that the map $w \mapsto \tilde{w}$ defines an isomorphism of the fixedpoint space of x^{p} in V_{1} onto the fixed-point space of x in V. This shows that $\hat{\chi}(x)=\hat{\psi}\left(x^{p}\right)$ for all $x \in G-H$.

Now

$$
m[\hat{\chi}, \zeta]=\frac{m}{|G|} \sum_{x \in G} \hat{\chi}(x) \overline{\zeta(x)}=\frac{m}{|G|} S_{1}+\frac{m}{|G|} S_{2}
$$

where S_{1} is the sum for $x \in H$ and S_{2} is the sum for $x \in G-H$. When $x \in H$, we have $\hat{\chi}(x)=\sum_{i} \hat{\psi}_{i}(x)$ and so

$$
S_{1}=|H|\left[\left(\sum_{i} \hat{\psi}_{i}\right), \zeta_{H}\right]=p|H|\left[\hat{\psi}, \zeta_{H}\right]
$$

since all $\left[\hat{\psi}, \zeta_{H}\right]$ are equal. (This is because the $\hat{\psi}_{i}$ are G-conjugate). Thus $(m /|G|) S_{1}=m\left[\hat{\psi}, \zeta_{H}\right]$ and this lies in \mathbf{Z} by the inductive hypothesis since $\psi(1)<\chi(1)$.

To evaluate S_{2}, define $\xi(y)=\sum_{x \in G-H, x^{p}=y} \zeta(x)$. Then

$$
\begin{aligned}
S_{2} & =\sum_{x \in G-H} \hat{\chi}(x) \overline{\zeta(x)} \\
& =\sum_{x \in G-H} \hat{\psi}\left(x^{p}\right) \overline{\zeta(x)} \\
& =\sum_{y \in H} \hat{\psi}(y) \overline{\xi(y)} \\
& =|H|[\hat{\psi}, \xi]
\end{aligned}
$$

and so $(m /|G|) S_{2}=(m / p)[\hat{\psi}, \xi]$ and we need to show that this lies in \mathbf{Z}.
If $x \in G-H$ and $x^{p}=y \in H$, then p divides the order of x. If $p \nmid m$, then $x^{m} \neq 1$ and so $\zeta(x)=0$ by hypothesis. It follows that ξ is identically zero if $p \nmid m$ and there is nothing to prove in this case. Suppose, therefore, that $p \mid m$. If $x^{m}=1$ and $x^{p}=y$, then $y^{(m / p)}=1$. Therefore, if $y^{(m / p)} \neq 1$, we have $\zeta(x)=0$ for all x with $x^{p}=y$ and so $\xi(y)=0$.

Now

$$
\xi(y)=\sum_{\substack{x \in G \\ x^{p}=y}} \zeta(x)-\sum_{\substack{x \in H \\ x^{p}=y}} \zeta(x)
$$

and so. $\xi=\left(\zeta^{(1 / p)}\right)_{H}-\left(\zeta_{H}\right)^{(1 / p)}$ and this is a generalzied character by Lemma 3 . Since $\xi(y)=0$ if $y^{(m / p)} \neq 1$, the inductive hypothesis yields $(m / p)[\hat{\psi}, \xi] \in \mathbf{Z}$, as required.

The proof of our main result, Theorem 1, is now complete.

3. Further remarks

If we drop the nilpotence hypothesis from Proposition 2, we get a statement properly stornger than Theorem 1. Is this statement true?

Theorem 5. Let χ be a character of an arbitrary finite group G and let ζ be a generalized character of G with the property that $\zeta(x)=0$ whenever $x^{m} \neq 1$ for some fixed positive integer m. Then $m[\hat{\chi}, \zeta] \in \mathbf{Z}$.
Proof. By Brauer's theorem on induced characters, the principal character 1_{G} can be written as a sum of induced generalized characters α_{i}^{G} where the α_{i} are characters of certain nilpotent subgroups $N_{i} \subseteq G$. Then

$$
\zeta=\zeta 1_{G}=\sum_{i} \zeta\left(\alpha_{i}\right)^{G}=\sum_{i}\left(\zeta_{N_{i}} \alpha_{i}\right)^{G} .
$$

Thus

$$
m[\hat{\chi}, \zeta]=\sum m\left[\hat{\chi},\left(\zeta_{N_{t}} \alpha_{i}\right)^{G}\right]=\sum_{i} m\left[\hat{\chi}_{N_{t}}, \zeta_{N_{t}} \alpha_{i}\right]
$$

and this is a sum of integers by Proposition 2, since the $\zeta_{N_{i}} \alpha_{i}$ are generalized characters which vanish on elements $x \in N_{i}$ such that $x^{m} \neq 1$.

We began this paper with the observation that if α is any \mathbf{Z}-valued function on G, constant on rational classes, then $|G| \alpha$ is a generalized character; equivalently $|G|[\alpha, \zeta] \in \mathbf{Z}$ for each $\zeta \in \operatorname{Irr}(G)$. The point of Theorem 1 is that in certain situations, for particular α, the coefficient $|G|$ can be reduced uniformly; i.e. for all ζ. It is true (and quite trivial) that for particular ζ we can reduce the coefficient for all α. We conclude with this observation.

Theorem 6. Let α be \mathbf{Z}-valued and constant on rational-classes of G. Then

$$
\frac{|G|}{\zeta(1)}[\alpha, \zeta] \in \mathbf{Z}
$$

for all $\zeta \in \operatorname{Irr}(G)$.
Proof. Let $x_{1}, x_{2}, \ldots, x_{k}$ be representatives for the conjugacy classes K_{1}, \ldots, K_{k} of G. Then

$$
\begin{aligned}
\frac{|G|}{\zeta(1)}[\alpha, \zeta] & =\sum_{x \in G} \alpha(x) \frac{\overline{\zeta(x)}}{\zeta(1)} \\
& =\sum_{i=1}^{k} \alpha(x) \frac{\overline{\zeta\left(x_{i}\right)}}{\zeta(1)}\left|K_{i}\right|
\end{aligned}
$$

and this is an algebraic integer since $\zeta\left(x_{i}\right)\left|K_{i}\right| / \zeta(1)$ is integral. Also, $(|G| / \zeta(1))[\alpha, \zeta]$ is rational since $|G|[\alpha, \zeta] \in \mathbf{Z}$. The result follows.

In view of Theorems 1 and 6 , one might guess that if $\chi, \zeta \in \operatorname{Irr}(G)$, then $(e / \zeta(1))[\hat{\chi}, \zeta] \in \mathbf{Z}$, where e is the exponent of G. This is false since if G has order p^{3} and exponent p (where p is prime), then $[\hat{\chi}, \chi]=1 / p$ for $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=p$.

References

1. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

[^0]: Received by the editors September 19, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 20C15.
 Research partially supported by a grant from the National Science Foundation.

