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VECTOR-VALUED HAUSDORFF SUMMABILITY METHODS

AND ERGODIC THEOREMS

TAKESHI YOSHIMOTO

(Communicated by Paul S. Muhly)

Abstract. Suppose X and Y are two general Banach spaces. Let H = (Ank)

(n,k = 0,1,2,...) be a general B[X, y]-operator valued Hausdorff summability

method: A„¿ = ("k)A"~kUk for k < n and A„¿ = 6xj for k > n, where

{t4}£i0 is a sequence of operators in B[X, Y] and A denotes the backward

difference (operator) and 9Xj(x) = 0y (the zero element in Y) for all x e

X . Then some necessary and sufficient conditions are given for the mean and

uniform convergence of the averages

n

12 Qà"-kUk(T*x)      (a- e x,TeB[X]).
(t=0

1. Introduction

Let there be given two general Banach spaces (X, || • H^) and (Y, \\ ■ \\Y). By

B[X, Y] we denote, as usual, the space of bounded linear transformations from

X into Y and B[X] — B[X,X]. Let {£/A.}/t=0 ̂e a seQuence of operators

in B[X,y] and H - pUp the Hausdorff method generated by U, where

U = diag(C/0, Ux, ...) and p = (pn k)   (n,k = 0,1,2, ...) is the differencing

matrix given by pn . = (-1)*(£) for k < n and by pn k = 0 for k > n. A.

direct computation [5] then shows that H = (An k)  (n,k = 0,1,2, ...), where

A«.*=(fc)A"~^        if0<¿<«,

K,k=ex.Y if k>n.

Here 9X y G B[X, Y] is given by Bx Y(x) = 0y  (the zero element in  Y) for

all x G X and

*Uk = Uk-UM,       A°Uk = Uk,

A"Uk =AA"~iUk       (n = 1,2, ... ;k = 0,1,2, ...).
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Following Kurtz and Tucker [6], we say that the sequence {cT^^n is a

moment sequence in B[X,F] if there is a constant M independent of {^}^0

such that

sup
n

¿(:)a"-hk> < M ■ supllx^ll^
Ylfc=0

for every bounded sequence {-x^}^ of points in X. The Hausdorff method

H = (Afl k) will be called quasi-regular provided that

(1.1) {£/¿}¡tl0 is a moment sequence in B[X,F],

(1.2) there exists an 7 G B[X, Y] such that

J2(%"-kUk(xk)^L(x)        in Y
l—n   \    /k=0

as « —► oo whenever xk —» x in X as k —» oo for any sequence {*¿}£t0

of points in X. In addition, if the operator L in (1.2) is invertible then the

method will be called strictly quasi-regular. Let 7 G B[X]. We say that the

method H = (An k) is 7-invariant if we have

fe=0 V   X A=0 x   '

whenever the limit on the right hand side exists. If for some S G B[X, Y] we

take Uk = (k+") S, where a is a positive integer, then the method H - (An k)

becomes a vector-valued (C,a)-method:

„,,     ¿(^"-vt.(»;«)-'t(»-^rl
This (C,a)-method is quasi-regular (if 5" is invertible then it is strictly quasi-

regular) and invariant under 7(g B[X]) power-bounded.

Let there be given a function K(-) defined on [0,1] with values in B[X, Yw],

where Yw denotes the weak sequential extension of Y in the sense of Tucker

[10], such that K(-) satisfies the Gowurin w-property and such that K(t) is

continuous at t = 0 and t = 1 with K(0) = 8X Y . If we consider the averaging

process

d-4)        E (fy-kUk(T*x) = jf' dK(t)± (fytk(l - t)"-kTk X

k=0   x   ' "u k=0

for x G X and 7 g B[X], then the method H = (An k) determined by

( 1.4) is quasi-regular and invariant under 7 power bounded. Now, for a given

7 G BLY], the (C,a)-mean ergodicity of 7 always implies the possibility of

the direct sum decomposition of X into two subspaces N(I- 7) and (/ - T)X

(see[l 1, Theorem 2.1] for general URS-methods). So it seems to be an interest-

ing problem to ask whether this fact is true for more general Hausdorff methods.



HAUSDORFF METHODS AND ERGODIC THEOREMS 917

In [7] Kurtz and Tucker gave only a sufficient condition for the mean conver-

gence of the averages of type (1.4), that is, if X is reflexive and 7 g B[X] is

power-bounded then, for any x G X ,

i   dK(t)-Yj(r!\tk(\-t)"~kTkx^K(\)Px       in F

as n —► oo, where 7 denotes the (C, l)-projection of X onto the null space

of / - 7. In this paper we consider the general averaging process

(L5) ¿ (J)a"-*C^(T*j:)      (xeX,TeB[X])
k=o ^ '

and give necessary and sufficient conditions for the mean and uniform conver-

gence of the averages of type (1.5) under a certain restriction on the method

H = (An k) (see Condition (*)). One of our results gives a partial answer to

the question mentioned above. Unfortunately we do not know the complete

answer to the question in the general setting without any additional conditions.

2. Mean convergence

The symbols D(W), R(W) and N(W) will be used for denoting the do-

main, range and null space of an operator W respectively. The symbol &(A)

denotes the linear subspace spanned by a set A c X . It is then easily seen that

nw>, N(I - Tm) = N(I - T) and 0(Um>, R{I - Tm)) = (I-T)X. Given a

quasi-regular Hausdorff method H = (An k) and a 7 G B[X], let

Qr=«>-y^±("ky-tUi-T'
k=o x 7

and let PT be a bounded linear projection of X onto N(I - 7) with 777 =

PjT = PT . Now we set up the following statements:

(I) D(QT) = X and QT = 77r (with 7 in (1.2)), i.e.,

V* € X>       Y~ }™¿Z(Í)An~kuk(Tkx) = LPT*-

k=0 V   J

(II) (a) supjELo ®à"-kUk ■ Tk\\ < +00,
«>0 "»[a ,r\

(b)   so -Urn ELo ("k)*n-kUk ■ Tk(I - 7) = 6XY .

(Ill) For each x e X , there exists a subsequence {«(| of {«} such that with

7 in (1.2)

w(Y) - lim V \.i)AH'~kUJT*x) = LPTx.

(IV) X = N(I - 7) 8 (/ - T)X .
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Condition (*). For each x* G X* there exists a y* G Y* such that for xx ,x2 G

X

x*(xx) = x*(x2) =>y*(Ukxx) =y*(Ukx2)       (k = 0,1,2, ...)

x*(xx) t¿ x*(x2) => y*(Lxx) ^ y*(Lx2)       (for 7 in (1.2)).

If we take X = Y and S — I (the identity operator on X) in (1.3) then

Condition (*) is satisfied. If in (1.4) we take X = Y and K(t) = F(t) ■ I,

where F(t) is a real valued function of bounded variation in 0 < t < 1 with

7(+0) = 7(0) = 0 and 7(1 - 0) = 7(1) = 1 , then Condition (*) is satisfied.

Theorem 2.1. Let 7 G B[X] and let the Hausdorff method H = (An k) be

strictly quasi-regular and invariant under 7. Assume Condition (*) and that

there exists a projection PT of X onto N(I-T) with PT = TPT = PTT. Then

the following equivalence relations hold:

"(I)"    o    "(II) and (III)"    «*■    "(II) and (IV)".

The proof of this theorem will be accomplished in the following three lemmas.

Lemma 2.1. Let 7 g B[X] and let the Hausdorff method H = (An k) be quasi-

regular and invariant under 7. Then Statement (I) implies Statements (II) and

(III).

Proof. Statement (II) follows from the uniform boundedness principle and the

7-invariance of the method H. Statement (III) is an immediate consequence

of Statement (I).

Lemma 2.2. Let 7 G B[X] and let the Hausdorff method H = (An k) be strictly

quasi-regular and invariant under 7. Assume Condition (*). Then Statements

(II) and (III) imply Statement (IV).

Proof. Let xeX . Statements (II)-(b) and (III) yield y*(LPTx) = y*(LPTTx)

for all y* G Y* . Thus, LPTx = LPTTx and PTx — PTTx = 77rx because

of the invertibility of 7 . We wish to show that x - PTx G (/ - T)X . Suppose

x - PTx £ (I - T)X . Then there exists an x* G X* such that

x*(z)=l       if z<£(I-T)X,

x*(z)=0       if ze(I -T)X.

Since T'x- TMx G (/- T)X (i = 0,1,2, ...), we have x*(Tkx) = x*(x)

for all  k = 0,1,2,_   So by Condition  (*)  there is a y* G Y*  such that
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y*(Uk(Tkx)) = y*0(Uk(x)) for all k = 0,1,2, .... From this it follows that

^=o

n,\ ,n,-k(2-1)        Vi   EQK-kUk(T*x)    = £ i'1'   A"^y*0(Uk(Tkx))
k=0

n.

ni\   ATli-k     *,

k=0

yrft
\k=0

E(I'>"'"^<f,w)

"¿rw
Letting i —» co in (2.1) entails y*(LPTx) = y*(Lx), and so, by Condition (*),

x*(PTx) = Xg(x). This contradiction implies that x - PTx G (/ - T)X .

According to Statement (II)-(a), one sees that

lßrll^x.n - I=ü E
k=0

n^A"-kUL-Tk
< +0O.

B[X ,Y]

Thus it follows that D(QT) and N(QT) are nonempty closed linear sub-

spaces of X. We see from Statement (II)-(b) that D(QT(I - Tm)) = X and

R(I-Tm)cN(QT) for all m = 1,2, .... Hence (/ - T)X C N(QT) c 7(07-).

On the other hand, the invertibility of 7 shows that A/(/ - 7) n (/ - T)X =

{0X}. Consequently, writing x = PTx + (x - PTx), we have X = N(I - 7) ©

(I-T)X.

Lemma 2.3. Let 7 G B[X] and let the Hausdorff method H = (An k) be quasi-

regular and invariant under 7. Suppose there exists a projection PT of X

onto N(I - 7) with PTT = 77r = PT. Then Statements (II) and (IV) imply

Statement (I).

Proof. Let x G X . Then x = x{ +x2 with xx G N(I - T) and x2 G (/ - T)X .

For xx one gets

(2.2)
A:=0

¿ziiy-'u^: in Y

as n —* oo . For x2 one sees that for any e > 0 there exist u, v € X such that

x2 = u - Tu + v , where

-i

(2.3) \v\\x < e ■    1 +sup
«>o E

ir=0

"AA""/cc/,-7,i

B[x,y]>

Thus by virtue of Statement (II)-(b) we have

E
A:=0

!V  kUk(Tk(I-T)u)-+0Y       in F
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as n —* oo and by (2.3)

E
u=o

Hence

(2.4)

~kUk(Tkv]

E
k=0

< | sup
n>0

A      U.

E
*=0

' U, ■ T
IM < e.

B[X.Y],

7 x. 0, in Y

as n —> oo. Therefore, combining the above two parts (2.2) and (2.4) implies

that D(QT) = X and QT = LPT. The proof is complete.

For 7 g B[X] let 7r = so -lini    _ T]°° . an    Tm , where A = (a„    ) is a
L    J 1 n—»oo ¿—*m=\    n ,m v   n,m'

7-invariant URS-method (an infinite regular matrix satisfying the uniformity

condition in the sense of Cohen [2]). We say that 7 is strongly //-ergodic

(resp. strongly A-ergodic) if D(QT) = X and QT = 77r as in Statement (I)

(resp. D(ET) = X).

Corollary 2.1. Let 7 G B[X] èe power-bounded and let the Hausdorff method

H = (An k) be quasi-regular and invariant under 7. Suppose that Statement

(II) holds for T and the method H. Then the strong A-ergodicity of 7 implies

the strong H-ergodicity of 7.

Proof. Suppose that 7 is strongly A-ergodic. Then, according to [11, Theorem

2.1] (cf. §4), X = N(I- T)®(I -T)X and there exists a projection PT of X

onto N(I - 7) with PT = 77r = 7r7. Therefore the strong //-ergodicity of

7 follows at once from Lemma 2.3.

If we consider the case that X is reflexive and 7 G B[X] is power-bounded,

then 7 is strongly A-ergodic ([2],[12]). In this case, Statement (II) holds for 7

and the Hausdorff method H determined by ( 1.4) which is quasi-regular and

7-invariant. Thus the mean ergodic theorem of Kurtz and Tucker [7] follows

at once from Corollary 2.1. We do not know whether the converse statement

of Corollary 2.1 holds without any additional conditions. In this connection we

have:

Corollary 2.2. Let T G B[X] be power-bounded. Suppose that the Hausdorff

method H = (An k) is strictly quasi-regular and invariant under 7 and that

Condition (*) holds. Then the strong H-ergodicity of 7 implies the strong

A-ergodicity of 7.

Proof. By Theorem 2.1,  X N(I - 7) © (/

e > 0 there exist xn, u, v G X such that x = x0 + (/ - T)u + v , Txr -
-i

<£•(!+ sup„

T)X.

V

Let x G X .   For any

o •
Then

oo

,)T     u+^
m=\

an,mT
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while, there is a number N such that for all n > N

KjTu\\x < a-(sup \\Tm\\     Y \\u\\x,
\m>0 )

<3eYsup||7m||     V \\u\\x,
\m>0 1

oo

<(sup^|i2   m|).(sup||7w||      ).||^IU.
X">1 .„_. '     ym>0 i

,m+l
¿2(an,,n+i-an,JT

oo

an,,nT   V
m=\ m=\

Thus we have, for all n sufficiently large,

Ílan,mTmx-(¿Zan,m)Xl
m=\ ¡n=\

I II T,n

< e • (sup ||7
m>0

lB[A-])-(4ii«iu + i:

This implies 7rx = x0 and hence D(ET) = X as was to be shown.

Theorem 2.2. Let 7 g B[X] and let the Hausdorff method H = (An k) be

strictly quasi-regular and invariant under 7. Assume Condition (*) and that

there exists a projection PT of X onto N(I - 7) with PT = 77r = PTT. Then

Statement (I) is equivalent to Statement "(II) and (V)":

(V) N(I - 7) separates N(I* -T*), where I* and 7* denote the adjoint

operators of I and T respectively.

Proof. Statement (V) is equivalent to Statement (IV). The proof of this follows

exactly the same line as that of [11, Theorem 2.4]. Therefore the conclusion of

the theorem follows immediately from Theorem 2.1.

Remark 1. If X = Y and Uk = ( +a) /, where a is a positive integer, then

the Hausdorff method H = (An k) is regarded as a real-valued (C,a)-mefhod.

In this case, for any 7 G B[X], each of Statements "(I)", "(II) and (III)",

"(II) and (IV)" and "(II) and (V)" implies the existence of a bounded linear

projection PT of X onto N(I- 7) with PT = TPT = 7r7. Thus we see from

this that Theorem 2.1 contains the mean ergodic theorems of Yosida-Kakutani

[13] and Chatterji [1]. Furthermore, it is worthwhile to notice that Theorem

2.2 is a further generalization of the theorem of Sine [9].

3. Uniform convergence

In [8], Lin gave an elementary proof of the (C, l)-uniform ergodic theorem

adding the condition "(I-T)X is closed" to Dunford's theorem [3]. This sug-

gests a similar theorem for more general Hausdorff summability methods. The

following theorem is a further generalization of Lin's theorem.

Theorem 3.1. Let 7 g B[X] and let the Hausdorff method H = (An k) be 7-

invariant and strictly quasi-regular. Assume Condition (*) and that there exists

a projection PT of X onto N(I - 7) with PT = TPT = PTT and that, with L
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in (1.2),

(3.1)

(3.2)

uo
d^oo^ \k

k=0

A'-*U,,

uo -}™t(nky-kVk-Tk(I-T) = 8XJ.

k=0  v   '

Then the following conditions are equivalent:

(A) uo - lim^ ELo ("k)A"~kuk -Tk = QT and QT = LPT.

(B) X = N(I -T)@(I - T)X and (I - T)X is closed.
(C) (/ - T)X is closed.

Proof. (A) =>• (B). In view of Theorem 2.1, it follows perforce by Condition

(A) that X = N(I - T)®(I -T)X. Let us put Z = (I - T)X. Clearly, Z

is invariant under 7 and QT = 6X Y on Z. Thus if we denote by 7Z the

restriction of 7 to Z then

uo

*:=0   V    y

Therefore, I —Tz is invertible on Z because 7 is so. Hence

Z = (I-TZ)Z = (I-T)ZC(I-T)X,    and     (/ - T)X = (I - T)X.

(C) => (A). Let us set Z = (I - T)X. By virtue of the open mapping

theorem, there exists a constant T > 0 such that for any z g Z there is a

u G X with

(3.3)

Therefore,

(3.4)

z = (I-T)u,

k)A       ^
£(;;)A'-t/,(rz)
k=0

<r- E
A:=0

\u\\x<r.\\z\\x.

'V" kUk-Tk(I- 7)
ix-

B[X,Y]

Note that Z  is invariant under 7. Using the restriction 7Z  of 7 to Z we

have, by (3.2) and (3.4),

E
*=0

n\An-k
Uk-T: 'X,Y inB[X,Y]

as « —► oo. Thus l—Tz is invertible on Z on account of the invertibility of

L, and

(/ - T)X = Z = (/ - 7Z)Z = (/ - 7)Z.

Now, observe that N(I - T)nZ = {Ox} . Accordingly, for any xel there

is a z G Z such that x - z G N(I - T) and hence X = N(I - 7) © Z . It is
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clear that QT = LPT on N(I - 7). For z = (/ - T)u in (3.3) we get

e(:>
k=0

kUk(Tkz] < e:
A=0

An—kT1

k'A      Ux T (I-T) ix-
B[X,K]

So, it follows that, for any x G X,

E(;v
/t=0

kUATkx) LPTx in F

as «-too. Hence D(QT) = X and ßr = 77r on X. Now, since (/ - 7)Z

is closed, there exists by the open mapping theorem a constant y > 0 which

may depend on 7 and 7Z but which is independent of x, such that

(3.5) Lv<1/- x whenever (/ - 7)x = (I — T)z

(x G X, z G Z).   Thus if for any x G X we write x

x - z g N(I - T), z G Z , we obtain by (3.3) and (3.5)

(x - z) + z  with

k=o v 7
(X)

<(i + y)

+ y ■ r •

/—n   ^    'k=0

n

B[.V.V]

k=0

Z(lKkUk.Tk(I-T)

x

B[X ,Y]

This together with (3.1) and (3.2) completes the proof.

Remark 2. Let X = Y in what follows. Consider a sequence {t/„}^l0 of

operators in B[X] given by Un = pn • I, n = 0, l , 2, ..., where {/^}^0 is

a sequence of real numbers with ß0 = l . The Hausdorff method H = (An k)

generated by { Un } is called regular if

(i)  supE
«>o

k=0
(")I|A'!^

A-llB[X]< +00 ;

,n-k
(ii)  (-)A1-

(iii)  t/n =

^ in B[Z] as « -► oo   (A: = 0, 1 ,2, ...) ;

For instance, if for some a > 1 , b > 0, p > I , 0 < q < 1, each ^n is given

by

K
loga

or   /<„
-bn"

log(« + a)

then the method H is regular since each pn isa regular moment constant ([5]).

If the method H is regular then it is also strictly quasi-regular with 7 = / in

(1.2) and satisfies the conditions (3.1) and (*). Indeed, if in (1.3) and (1.4) we

take S = / and K(t) = F(t) • I, where F(t) is a bounded increasing function

of t with 7(+0) = 7(0) = 0 and 7(1 - 0) = 7(1) = 1 , then the method H

is regular and satisfies the condition (3.2) for every power-bounded 7 G B[X].
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(1) Let 7 G B[X] be power-bounded and compact. If the method H is

regular and Tx = X~ 7, for (0 j£)A G p(T), the resolvent set of 7, satisfies

the condition (3.2), then Tx is uniformly //-ergodic by Theorem 3.1 since

(/ - Tf)X is closed.

(2) Let the method H be regular and let 7 G B[X] be power-bounded and

satisfy the condition (3.2). If there exist nonnegative numbers ax, ... ,aN with

12i=\ai — 1 such that ||E/=ifl,3"' _ ^llwxi < ' ^or some compact operator

5 G B[X], then by [8, Corollary 2], 7 is uniformly (C, l)-ergodic. Hence

(/ - T)X is closed, and so by Theorem 3.1, 7 is uniformly //-ergodic.

Now the uniform ergodic theorem has close connections with the spectral

theory. To illustrate this, let 7 G B[X] and Tx = X~ T for a complex number

with \X\ > r(T), where r(T) stands for the spectral radius of 7. Let H =

(An k) be a strictly quasi-regular Hausdorff method invariant under Tx, and

suppose the conditions (*), (3.1) and (3.2) for Tk. Suppose that there exists

a projection PT of X onto N(I - 7>) with PT = T¡PT = PTT}. Then

Statement (A) of Theorem 3.1 applied to Tx implies that either X belongs to

the resolvent set p(T) or A G rj(7) (the spectrum of 7) and A is a pole of the

resolvent R(n,T) of order 1. In fact, by Theorem 3.1, X = N(I-Tf)®(I-Tf)X

and (/ - TX)X is closed. If N(I - Tf) = {0X} then (/ - TX)X = X. Since

QT   vanishes on (/ - T)X and 7 in (1.2) is invertible, / - Tx is invertible

and so is XI - 7. Thus D((U - 7)"1) = (XI - T)X = X. On the other hand,

since r(7) < |A|, it follows that (XI - 7)_1 = E^lo T"/X"+ which converges

in the uniform operator topology, so that X G p(T). If N(I - 7;) / {0X} then

N(XI - 7) 7^ {0^} and 7A(= 7r ) is non-degenerate. Hence X G ct(7) and

(XI - T)PÁ = 8X . This implies that A is a pole of R(p,T) of order 1 ([4,

Theorem 18, p. 573]).

4.  URS-METHODS

Finally we touch upon the mean and uniform convergence for real valued

URS-methods. The method of proof used in §§2-3 for the Hausdorff summa-

bility methods applies well to the case of real valued URS-methods including

the (C,a)-method with any real a > 0. Given a 7 G B[X] and a real valued

URS-method A = (an ) (n,m = 1 ,2, ...), we set up the following state-

ments:

(MA,)        There exists a projection  ET G B[X] of X onto  N(I - 7) ,

such that, for each x G X ,

EtX = lim y^ a     T'"x,        £T = 77,. = 7^7.
/ n—>oo /  J    n ■'" ' 11

»i=l
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(MA,)
(a) sup  E

«>i m=\    n ,m
B[X]

< +00  ,

m+1
(b) so-limE.=,K,m+1-a„,m)7'"+'=0.

(MA,)        For each x g X , the set {E~. an mT"'x: n = 1,2,...} isFor each x g X , the set {Em=) a„ mT"'x'- n

weakly sequentially compact.

X = N(I -T)@(I - T)X .

N(I - T) separates N(I* -T*).

(MA4)

(MA5)

Then we have the following theorem.

Theorem 4.1 (cf.   [11]). Let 7 g B[X] and let A = (anm) be a real valued

T-invariant URS-method. Then the following equivalence relations hold :

"(MA,)"    e> "(MA2) and (MA3)"

o "(MA2) and (MA4)"    ^ "(MA2) and (MA$)".

Moreover, by the same manner as that in §3, we can prove the following theo-

rem.

Theorem 4.2. Let T G B[X] and let A = (an m) be a real valued T-invariant

URS-method. Suppose that Statements (MA2)-(a) and (MAf)-(c) hold :

(MA,) (c) uo - lim y^(a„
m+\ an,JT

m+\
0.

m=\

Then the following conditions are equivalent :

(UA,)        There exists a projection   EtgB[X] of X onto N(I-T) with

ET = 77r = 777 , such that

uo - lim
n—>oo ¿Z^nt^-E,

m=\

0.

B[A]

(UA,) X = N{I - 7) © (/ - 7)A" W   (/ - T)X is closed.

(UA3)        (I-T)X is closed.

Remark 3. Let  H = (Afl k)  be a real valued Hausdorff summability method

given by Xn k = (k)A"~ pk if 0 < k < n and Xn k = 0 if k > n , where

{¡un}^=0 is a sequence of real numbers. If the method H is regular and satisfies

the following uniformity condition: for any e > 0 there exists a number r(e)

such that

E
Ar=0

« + 1 \ An-*+l
A /^ <«,        K+il <£- " > r(£)'

then it is a real valued URS-method (cf. Remarks 1 and 2).
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