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Abstract. Let £ be a Hausdorff barrelled space. If there exists a dense bar-

relled subspace M such that (codim(M) > c) [codim(M) = dim(£)], we

say that (M is a satisfactory subspace [11]) [E is barrelled!)-fit], respectively.

Robertson, Tweddle and Yeomans [11] proved that E has a barrelled countable

enlargement (BCE) if it has a satisfactory subspace. (Trivially) E has a satis-

factory subspace if dimfZT) > c and E is barrelledly fit. We show that E is

barrelledly fit (and dim(E) > c) if E f. ip and either (i) E is an (LF)-space,

or (ii) E is an infinite-dimensional separable space and the continuum hypoth-

esis holds. Conclusion: barrelledly fit spaces and their permanence properties

arise from and advance the study of BCE's.

We have shown in [10] that every Hausdorff barrelled space 7 with É ^

E* has a dense denumerable-codimensional subspace, necessarily barrelled by

[13]. In [20] it is shown, assuming a "Condition (2')" strictly weaker than

the continuum hypothesis, that 7 must always contain a dense uncountable-

codimensional subspace. In fact, a number of papers explicitly involve dense

infinite-codimensional subspaces of barrelled spaces, including [4, 5, 21] and

others individually cited later. This paper focuses on dense large-codimensional

subspaces that, in addition, are barrelled, contrasting with the «o«-barrelled

focus of [17].

A Hausdorff topological vector space 7 is fit [18], [20] if it contains a dense

subspace M whose codimension is as large as possible, namely, if codim(M) =

dim(7). Call 7 barrelledly fit if M can be chosen so that M is also barrelled.

This forces 7 to be (locally convex and) barrelled; clearly, 7 is barrelledly

fit if and only if there is a dense barrelled subspace with equal dimension and

codimension. A barrelledly fit space of dimension > c (= 2 °) has a satisfac-

tory subspace; the converse fails (Example 1). Implicit in [3] is a discussion

(p. 246) of satisfactory subspaces and a result (Remark (ii)) on barrelledly fit

spaces which is generalized here. We improve several parts of [ 11 ] and show

by later theorems and examples what are the best possible generalizations, in

various different senses, of the Abstract's (i). We do not know the answer to
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the basic question "Is every barrelled, fit space barrelledly fit?". Some further

open questions are discussed.

For standard terminology and notation not herein defined or otherwise ref-

erenced, one may refer to [6-9]. We assume that all spaces are locally convex

and Hausdorff (with real or complex scalar field).

A space 7 is called a (db)-space if, whenever 7 is the union of an increasing

sequence of subspaces, one of them is dense and barrelled. (See [11] and [14].

Such spaces are also called suprabarrelled in [23].) By an oft-used technique,

any infinite-dimensional space 7 is the union of an increasing sequence of

subspaces, each with dimension and codimension equal to the dimension of 7

(see [13], p. 96, [11], p. 107 and [3], p. 246). This yields immediately:

Proposition 1. Every infinite-dimensional (db)-space is barrelledly fit. (A parallel

result:   Every infinite-dimensional Baire space is "Baire-ly fit".)

Example 1. A space with a satisfactory subspace need not be barrelledly fit: let

7 be a space of dimension c with a satisfactory subspace M, and let G be

a space of dimension d > c with its strongest locally convex topology. Then

E = F x G has a satisfactory subspace M x G. But 7 is not barrelledly fit.

For if 7 is a dense subspace of 7 and n is the projector of 7 onto G,

then n(L) is dense in G and so n(L) — G. Hence (7 x {0}) + 7 = 7, so

codim(7) < dim(7) = c < d = dim(7), and 7 is not fit.   o

Our next Proposition is an immediate consequence of the obvious fact that 7

(locally convex) is fit if [and only if] (E ,o(E ,E')) is fit, and the fact proved in

[ 18] that if 7 has a 0-neighborhood base whose cardinality does not exceed the

dimension of 7 , then E is fit [e.g. every infinite-dimensional metrizable space

is fit]. We prefer, however, to give a short independent proof: the proposition

plays a vital role in one of our main results.

Proposition 2. If E has infinite dimension not exceeded by that of E', then E

is fit.

Proof. Let d be the (infinite) dimension of E, and let S? be a collection of

d subspaces each of dimension d such that 7 is algebraically the direct sum

of the members [d = d ; cf. [10], Example (d)]. For each member G of 5?,

by the Hahn-Banach Theorem

dim(G') < dim(7') < d < 2d = dim(G*)

so G' yí G* and there is a dense 1-codimensional subspace GQ of G . It follows

that 70 = span((JGe y GQ) is a dense ri-codimensional subspace of 7 .   D

Theorem 1. Assume the continuum hypothesis [Nj = c]. Let E be a barrelled

space containing a subspace M with dim(M) > c > dim(M'). Then E contains

a dense barrelled subspace with codimension equal to dim(M). In particular, E

contains a satisfactory subspace.

Proof. Let N be an algebraic complement of M in 7.
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Case I. dim(Af) = c. By Proposition 2, there exists a subspace M0 of M

which is dense and c-codimensional in M. Let 7 be a Hamel basis for an

algebraic complement of MQ in M. There is a collection â§ of 2C subsets of

7, each with cardinality c, such that Tx n 72 is countable for distinct 7,, T2

in ^, by Theorem 1.3, p. 48 of [8]. The proof proceeds by contradiction:

suppose that, for each 7 in 3S, ET = MQ + span (7 \T) + N is not barrelled,

so that there exists a sequence ST in E' which is pointwise bounded on ET

but not on 7 ; let RT be the sequence of restrictions to M. The mapping

7 i-> RT cannot be one-to-one, since there are only c distinct sequences in

M'[(2Hof" = c]. Let Tx, T2 be distinct with RT¡ = 7^. Then RT is

pointwise bounded on L = MQ + span(7 \ (7, n T2)), and so ST is pointwise

bounded on 7 + N, a dense subspace of 7, barrelled by [13]. Therefore, ST

is ct(7 ,7)-bounded, a contradiction.

Care II. dim(M) > c. For each non-o^M', M)-bounded sequence in M1,

choose one point in M at which the sequence is unbounded. The collection

7 of all these points has cardinality < c, so 7 = span(7) has codimension

in M equal to dim(M) [> c], and any sequence in M' bounded on points of

7 must be cr(M',M)-bounded. Thus the bipolar theorem assures that 7 is

dense in M, and P + N is dense in 7 , with codimension equal to dim(M).

Moreover, any sequence in E1 bounded on points of 7 + N must be bounded

on points of M + N = E, so P + N is barrelled.   D

Corollary 1. Assuming the continuum hypothesis, if E ^ cp is an infinite-

dimensional barrelled space with dim(E') < c, then E is barrelledly fit.

Proof. Isomorphically, cp is the only NQ-dimensional barrelled (Hausdorff)

space; apply the theorem with M = E .   D

Corollary 2. Assuming the continuum hypothesis, every barrelled space which

contains a separable subspace of uncountable dimension has a satisfactory sub-

space. In particular, every infinite-dimensional separable barrelled space except

cp (i.e. every separable barrelled space E with E' ^ 7*) has a satisfactory

subspace; even more, is barrelledly fit.

Proof. The dual of a separable space has dimension < c .   o

Assuming the continuum hypothesis, Ian Tweddle in [22] constructed a dense

barrelled subspace y/ of co [= K °, a scalar field product space], demonstrating

several interesting properties of yi, including barrelledly fitness. This follows

immediately from Corollary 2. One could also observe that, without regard to

the continuum hypothesis, if K0 < d < c then K is a separable barrelled

space. Now assume the continuum hypothesis: the Hahn-Banach Theorem

and Corollary 1 assure that every infinite-dimensional barrelled subspace of

K is barrelledly fit, but the latter part of Corollary 2 does not, since K has

nonseparable barrelled subspaces. For example, the subspace 70 of members
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of K having only countably many nonzero coordinates is a dense barrelled

nonseparable subspace.

Theorem 5 of [11] states that if 7 has a satisfactory subspace, then 7 has

a barrelled countable enlargement (BCE). In [19] this result is sharpened by

replacing c with N, , again assuming "Condition (2')". The existence of a BCE

is also discussed in [22] and in [1].

Corollary 3. Assuming the continuum hypothesis, every separable infinite-

dimensional barrelled space except cp has a BCE.

Proof. By Corollary 2 and Theorem 5 of [11].    D

We shall show later (Proposition 6) that every (77)-space except cp has a

satisfactory subspace, and so a BCE. We may deduce this also here, under the

assumption of the continuum hypothesis. For if 7 = lim En , then one of the

Fréchet spaces, say E , is infinite-dimensional (7 / cp). But then 7 contains

a separable c-dimensional subspace M, and M remains separable under the

coarser topology induced by 7, and Corollary 2 applies. In fact, in the case of

7 an (77)2or 3-space [14]—[16], 7 has a separable quotient to which Corollary

3 or even Proposition 1 applies (see [14], Corollary to Theorem 3 and [15],

Theorems 3, 4, 1 and 9), and one is then tempted to try some version of [1],

Theorem 5 to see that 7 has a BCE. A different and fruitful approach develops

permanence properties of barrelledly fit spaces, adding to the catalogue of spaces

having a satisfactory subspace and so a BCE, and yielding three generalizations

of the (77)-space result (Proposition 6, Theorems 3, 4), all without requiring

the continuum hypothesis.

Proposition 3. Arbitrary Cartesian products and locally convex direct sums of

barrelledly fit spaces are barrelledly fit.

Proof. Obvious.   D

Example 2. Quotients of barrelledly fit spaces need not be barrelledly fit: let

7 / {0} be any barrelledly fit space. Then 7 x cp is barrelledly fit but has

the nonfit cp as a quotient. Considering {0} x cp shows that: Closed barrelled

subspaces of barrelledly fit spaces need not be barrelledly fit. Further, by Example

1 : A space may have a barrelledly fit quotient anda nontrivial barrelledly fit closed

subspace, without being barrelledly fit.   G

The next proposition stands in contrast to the last statement. By [12], the

three-space problem is true for 7 = barrelled. (Here we are using the termi-

nology of [2].) With a short straightforward argument, this yields:

Proposition 4. The three-space problem is true for 7 = barrelledly fit.

Some fit spaces have nonfit countable-codimensional subspaces [18]. How-

ever:
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Theorem 2. Every countable-codimensional subspace M of a barrelledly fit space

E is barrelledly fit.

Proof. Let N be an algebraic complement of M and let 70 be a barrelled

dense subspace of 7 with codimension equal to the dimension of 7. Set

M0 = (E0 + N)r\M and note that, for 7 / {0}, \ < dim(E) = dim(7) -

N0 = [codim(70) in 7] - N0 < codim(70 + N) in 7 < codim(M0) in 7,

so that, in any case, codim(Af0) in 7 = dim(7). Similarly, codim(A/0) in

M = codim(Af0) in 7 = dim(7) = dim(M).

Again by the same transfinite arithmetic, if Mx is a countable-dimensional

subspace of M ,M0 + MX still has codimension in M equal to the dimension of

M. Our proof is carried by demonstrating such an Mx with MQ + Mx barrelled

and dense in M. It is a trivial exercise to show that M0 + N contains the

dense barrelled space 70 and thus is itself barrelled. By [13], M0 is barrelled.

Again, 7 = MQ+N is barrelled, so that any (necessarily countable-dimensional)

algebraic complement of MQ in 7 is a topological complement and has its

strongest locally convex topology by [13, p. 92]. 7, then, is the topological

direct sum of two subspaces of 7, one closed and one complete, so 7 is closed.

Hence F(d EQ) is all of 7. Therefore MQ is countable-codimensional in 7,

and MQnM is countable-codimensional in M. But M is barrelled, and, again,

any algebraic complement Af, of M0nM in M has its strongest locally convex

topology, with M = (MQr\M)®Mx topologically. Thus the subspace MQ + MX

is MQ © M,, the topological direct sum of two barrelled spaces: MQ + Mx is

barrelled and clearly dense in M, completing the proof.   □

Note. The proof also shows: if E has a satisfactory subspace, so does M (cf.

[1], Theorem 6).

In discussing inductive limits, we need the following three simple Lemmas.

Lemma 1. Let (7. ,J/T) and (E ,¿T) be two barrelled spaces, with the first con-

tinuously included in the second. If V is an absolutely convex closed subset of

(E ,ZT) which absorbs points of a dense barrelled subspace L of (Ex,^), then

V absorbs points of Ex. Indeed,  V n 7, is a ^-neighborhood of 0.

Lemma 2. With (Ex,^\) and (E ,£T) as above, if M is a subspace of E such

that M n 7, is a dense barrelled subspace of (Ex,3rx) and such that Ex+ M is

a dense barrelled subspace of (E ,y), then M is a dense barrelled subspace of

Proof. Let V be any absolutely convex closed subset of (E ,S7~) which absorbs

points of M . Then by Lemma 1 with 7 = M D Ex , V absorbs points of 7, ,

and hence points of 7, + M, and thus points of 7, now applying Lemma 1

with the two spaces coincident. Therefore F is a ^-neighborhood of 0. It

follows that M is dense and barrelled in (7,y).     D

Lemma 3. Let (E, ¿7") be the (Hausdorff) inductive limit of an increasing system

{(7(i,iQ}r   r of barrelled spaces.  That is, T is a totally ordered set; each Ea
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is barrelled and for a, ß gY with a < ß ,En C Eß and ¡TB induces a topology

on E coarser than ST;E = 11 ^r7 ; and ST is a Hausdorff locally convex

topology, the finest one which induces on Ea a topology coarser than 3T, for

each a. If M is a subspace of E such that, for all a in Y ,M C\ E is a dense

barrelled subspace of {E , ¿Tt), then M is a dense barrelled subspace of (E, ¡T).

Proof. Let V be any absolutely convex closed subset of (E ,¿T) which absorbs

points of M. Then, for each a,Vr\Ea is a ^-neighborhood of 0 by Lemma

1, so V isa ^"-neighborhood of 0.     G

The remaining propositions and theorems generalize Note 3.2, its Corollary

and Corollary 3 to Lemma 3 in [11].

Proposition 5. Let (7, ,^) be barrelled and continuously included in the bar-

relled space (E ,!T). If E0 is a dense barrelled subspace of (EX,¿TX) and N

is any algebraic complement of Ex in E, then E0 + N is a dense barrelled

subspace of (E,3r). In particular, if (Ex ,¿7¡) has a satisfactory subspace, so

does E.

Proof. Let M = EQ + N . Then 7 = 7, + N = 7, + M and 70 = M n 7, , so

Lemma 2 applies. Also, the codimension of EQ in Ex equals that of 70 + N

in 7.     D

Proposition 6. Let (E ,¿7~) be the (Hausdorff) inductive limit of an increasing

system {(7(,^)}(ter of barrelled spaces. If some (7t,^) has a satisfactory

subspace, then so does E. In particular, every (LF)-space except cp has a

satisfactory subspace and a BCE.

Proof. In general, Proposition 5 applies. In particular, any (77)-space non-

isomorphic to cp continuously includes an infinite-dimensional Fréchet space

7, . Thus dim^) > c and Ex has a satisfactory subspace by Proposition

1.     D

Theorem 3. The (Hausdorff ) inductive limit (E ,ST) of an increasing sequence

{( En, ¡Tn )} ~ , of barrelledly fit spaces is barrelledly fit.

Proof. Let En d be a dense barrelled subspace of (En,¿Tn) whose dimension

and codimension in En are equal (n = 1,2,...). Set 7, = 7, d = Af, and

let Hx = Gx be any algebraic complement of 7, in Ex . Then dim(7,) =

dim(Hx) - dim(7,). Let M2 be any algebraic complement of Ex n 72 d in

72 d . Then 7! + M2 D E2 d . Let G2 be any algebraic complement of 7, + M2

in 72, and set

72 = 7, + M2 ,        H2 = GX+G2 = HX+ G2

so that F2 and 7/2 are algebraically complementary in 72 and 7, c 72, H, c

H2. If dim(72) = dim(7,), we clearly have dim(7,) = dim(H2) = dim(72),

and this result still holds by elementary transfinite arithmetic in case dim(72) >

dim(7,).  By Lemma 2, 7,  is a dense barrelled subspace of (E2,!J~2). Using
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induction, we can continue the process to obtain increasing sequences {7n}^, ,

{Hn}°^=[ such that Fn is a dense barrelled subspace of (En ,,Tn) and Hn is an

algebraic complement with dim(7n) = dim(7/n) = dim(7n) (n = 1,2, ...).

Set
oo oo

'«IK-        H-\jHm.
77=1 77=1

It is clear that 7 and H are algebraically complementary in 7, dim(7) =

dim(Tf) = dim(7), and 7 is a dense barrelled subspace by Lemma 3.     □

Example 3. There are strict inductive limits of (uncountable) increasing systems

of barrelledly fit spaces that are not barrelledly fit: Let 7 / {0} be any bar-

relledly fit space, let p be the first ordinal whose cardinality exceeds the dimen-

sion of 7, and let 7 be a vector space with Hamel basis {xa}a€ indexed

by p. For each a G p, set FQ = span({x„}„<rJ , given its strongest locally

convex topology, and set Ga = E x Fa . Then {Ga}a€ is an increasing system

of barrelledly fit spaces [dim(7f() < dim(7)] whose inductive limit is strict and

is equal to 7x7, where 7 is given its strongest locally convex topology. By

the argument of Example 1, 7x7 is not fit.   D

Analogues to some of these results, including Theorem 3, Example 3, and the

following Theorem 4, are found in [18], with "fit" replacing "barrelledly fit".

Theorem 4. The (Hausdorff) inductive limit of an arbitrary increasing system of

infinite-dimensional (db)-spaces is barrelledly fit.

Proof. Let (7,ZT) and {(En,&~a)}n&. be as in Lemma 3 with each (Ea,3ff)

an infinite-dimensional (db)-spaee. We assume that Y has no countable co-

final subset, since the countable case is covered by Theorem 3. Let & be

the collection of all quadruples (S,F,H,g) such that: 0 ^ S cY;F is a

dense barrelled subspace of Ls, the inductive limit of the increasing system

{(7(,^)} s , with algebraic complement H (in Ls) ; and g is a one-to-one

linear map from 7 onto H. By Proposition 1, S? is nonempty. We partially

order S? by writing (Sx ,Fx,Hx,gx) < (S2,F2,H2, g2) if (and only if) Sx C S2,

7, c 7,, Hx c H2, and gx = g2\F . Let W be a chain in S?. Then applying

Lemma 3 to the inductive limit of all the spaces Ls with (S,F,H,g) G W,

it follows that W has a least upper bound. By Zorn's Lemma, there is a maxi-

mal element (S0, FQ, HQ, g0) in %? . Now suppose there is some a in Y such

that 75 = 70 + 7/0 is an infinite-codimensional subspace of Ett. Let B be

a basis of an algebraic complement of Ls in Eit and partition 7 into de-

numerably many subsets each having the same cardinality as 7 . Applying the

technique used in Proposition 1 to the (db)-space En — Ls + span(7) yields

algebraically complementary subspaces M and N in span(7) of equal dimen-

sion such that Ls + M is dense and barrelled in (En,^). By equality of

dimension, there is a one-to-one linear extension gx of g0 mapping 70 + M

onto H0 + N.  Moreover,  70 + M is a dense barrelled subspace of (En,^t)
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by Lemma 2, and the inductive limit space Ls u,, is just (Ea,¿Tf), so that

(50U{q}, F0 + M, Hq + N, gx) is in & , contradicting maximality. Thus it is

false to suppose that Ls is infinite-codimensional in any En . It now follows

that 7C   must be finite-codimensional in 7 itself: otherwise there would be
JO

a strictly increasing sequence {a„}^, c Y such that Ls c£ c£ c ...,

with each subspace of (finite) positive codimension in the succeeding one. But

as {a«}^ti is not cofinal, there is some a in Y which exceeds each an , thus

forcing the contradiction that Ls is infinite-codimensional in Ea . Let N be

a (finite-dimensional) algebraic complement of Ls in 7. By Proposition 5,

F0 + N is a dense barrelled subspace of 7, and clearly, codim(70 + N) in

7 = dim(HQ) = dim(70) = dim(70 + N).   o

Example 4. There are strict inductive limits of directed systems [7] of infinite-

dimensional (db)-spaces that are not barrelledly fit: specialize Example 1 by

taking 7 to be a (riè)-space. Then 7 = 7 x G is the strict inductive limit of

the (by inclusion) directed system {7 x N: N is a finite-dimensional subspace

of G} of infinite-dimensional (db)-spaces which, as was shown, fails to be

fit.   D

Open questions. In this paper we have answered affirmatively in special cases

only the basic, still open question "Does every barrelled space 7 with 7' ^ 7*

have a BCE?". Assuming the generalized continuum hypothesis, [20] shows that

7 (as above) always contains a barrelled, fit subspace of dimension > c ; thus

if every barrelled, fit space is barrelledly fit, then 7 has a satisfactory subspace

and a BCE. In [11] the substitute question was (is) "Does every 7 (as above)

have a satisfactory subspace?"; in this paper, "If E is barrelled and fit, is E

barrelledly fit?". All three of the questions seem intrinsically interesting, and as

suggested by the reasoning above and in [11], "Yes" to either one of the latter

two questions would imply "Yes" to the preceding one(s).
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