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ABSTRACT. Let E be a Fréchet space and let C%(E) denote the vector space
of all bounded continuous functions on E . It is shown that the following
statements are equivalent: (i) E is Montel. (ii) Every bounded continuous
function from E into ¢y maps every absolutely convex closed bounded subset
of E into a relatively compact subset c; . (iii) Every sequence in C®(E) that
converges to zero in the compact-open topology also converges uniformly to
zero on absolutely convex closed bounded subsets of FE .

1. INTRODUCTION

It is well known that a Fréchet space E is Montel iff it is separable and every
weak*-null sequence in E' converges uniformly to zero on bounded subsets of
E . Because of the Josefson-Nissenzweig theorem H. Jarchow asked in [6, p.
247] if this result is true without the separability condition on E . The property
that every weak*-null sequence in E' converges uniformly to zero on bounded
subsets of E holds iff every continuous linear mapping from E into ¢, maps
every bounded subset of E into a relatively compact subset of ¢,. In this
note we prove that a Fréchet space E is Montel iff every bounded continuous
function from E into ¢, maps every absolutely convex closed bounded subset
of E into a relatively compact subset of ¢, . Using this result, we obtain that a

Fréchet space E is Montel iff every sequence in Cb(E )} that converges to zero
in the compact-open topology also converges uniformly to zero on absolutely
convex closed bounded subsets of E.

For basic definitions and notations not given below, see[6]. For a Hausdorff
locally convex space (short Ics) E, Z, denotes a fundamental system of ab-
solutely convex closed neighbourhoods of zero in E. For U € %, we write
E,, for the normed space canonically associated with U and ¢, for the cor-
responding quotient mapping E — E,,. We shall also consider ¢, as a map

from E into EU the completion of E;,. Let C b(E ) be the vector space of all

bounded continuous functions on E. By E' we mean the topological dual of
E . For E Ics we take the notations E[') . and Ej, if E' is equipped with the
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topology of uniform convergence on the precompact and on the bounded sub-
sets of E, respectively. If every null sequence in o(E',E) is equicontinuous,
then E is called c,-barrelled. Every barrelled space is c,-barrelled. Further
let %, denote a fundamental system of absolutely convex closed bounded sub-
sets of E. When 4 € %, let E, denote the associated normed space. If
A, B e %’E and A C B then there is a unique continuous linear extension
i E P E p of the canonical inclusion E, — E to the completions. If E
is a quasi-complete space, then E, is a Banach space for every 4 € %,..

2. A CHARACTERIZATION OF FRECHET-MONTEL SPACES

Let E be a Ics and let &/ be an ideal of Banach space operators. Then
E is called an . -space [6], if for each U € %, there exists a V € Z, with
V- c U such that ¢, € & (EV,EU). A bounded operator from a Banach
space into another Banach space is called a Rosenthal operator, if the image
of the unit ball is conditionally weakly compact. Recall that a subset B of a
Ics is called conditionally weakly compact, if every sequence in B has a weak
Cauchy subsequence. The Rosenthal operators between Banach spaces form a
closed, surjective and injective ideal .% . In [9] we have called a subset B of a
Ics E limited, if every equicontinuous, o(E’, E)-null sequence in E' converges
uniformly to zero on B. Thus every bounded subset of E is limited iff every
equicontinuous, ¢(E’, E)-null sequence in E’ converges uniformly to zero on
bounded subsets of E. Let E and F be Banach spaces. A bounded operator
T: E — F iscalled limited [1], if T takes the unit ball of E to a limited subset
of F. The limited operators between Banach spaces form a closed, surjective
ideal .Zim that is not injective. The injective hull of Zim is % [9]. In [8]
we have proved that the product of three limited operators is compact. We start
with the following important consequences of this result:

Proposition 1. Let E be a Ics. Then:

(i) E/I3 is a Schwartz space iff for every A € % there exists a B € %,

A C B, such that i,,: EA — EB is limited.
(ii) E is a Schwartz space iff it is quasi-normable and every bounded subset
of E is limited.

Proof. (i) By [10] E; is a Schwartz space iff for every 4 € %, there exists a

B e B, AC B, such that i 4B E Vi E p is compact. Thus the statement is a
consequence of the fact that the product of three limited operators is compact.
(i1) This is Corollary 3 in [8] which says that E is Schwartz iff it is quasi-
normable and every equicontinuous, weak*-null sequence in E’ is also E/'g-null
convergent.

For our next proposition we need some lemmata.

Lemma 2. Let E be a reflexive space such that E;
bounded subset of E; is limited.

. is cy-barrelled. Then every
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Proof. Let AC E;, be bounded. Then A is equicontinuous, since E is quasi-
barrelled. By Alaoglu-Bourbaki’s theorem A is relatively compact in E,/;c , and

consequently limited in E;)c [9]. Now let (u,) be an equicontinuous, weak*-
!

null sequence in (Ej)'. Since E = (E;) implies that E = (E, )" we get
that (u,) is an equicontinuous, weak*-null sequence in (E, ). Hence (u,)

converges uniformly to zero on A4, i.e. A is limited in E; .

Lemma 3. Let E be a quasi-complete space. Then E has the Schur property,
i.e. every weak-null sequence (x,) in E converges to zero in E, iff EII)C is
cy-barrelled.

Proof. Since E is quasi-complete, E = (E;C)'. Suppose that E;C is c,-
barrelled. Let x, — 0 in o(E,E') = a((E;c),’E,I;c) . Hence x, € K°, where
K is a relatively compact subset of E. This implies that x, — 0 in E,
since the topology of E and o(E,E') coincide on the compact subset K°°
of E. Conversely, suppose that E has the Schur property. Let u, — 0 in
a((E,) ,E,.) = 0(E,E'). Then K := {u,: n € N} is a relatively compact
subset of E and hence equicontinuous.

Proposition 4. Let E be a quasi-complete, barrelled space such that E'ﬂ is quasi-
normable. The following statements are equivalent
(i) Every bounded subset of El'g is limited.
(ii) E, is Schwartz.
(iii) E is Montel.
(iv) E is reflexive and E;C is c,-barrelled.

Proof. (i) & (ii) by Proposition 1 (ii). Since every bounded subset of E is
precompact, when E:g is Schwartz [10], (ii) = (iii). (iii) = (iv) by Lemma 3.
(iv) = (i) by Lemma 2.

This proposition is not valid if we drop the assumption that E is quasi-
barrelled. This follows from the following example constructed by A. Garcia and
J. Gémez in [5]. Let F be the Banach space /_, (x,) a weak null sequence in
F,suchthat ||x,||=1 foreach n and { = {S C F: S isfiniteor S ={x,:n€
N}}. Let E be the space F' endowed with the locally convex topology, having
as a subbase at zero the sets S° , when S ranges over ¢£. Then E;, =1, Eis
semi-reflexive with the Schur property but not semi-Montel. The Schur property
of E follows from the fact that /_ is a Grothendieck space with the Dunford-
Pettis property.

If the equicontinuity is removed from the definition of a limited set, then
relatively compactness does not imply limitedness. This follows from the proof
of Lemma 2, since otherwise we would obtain that e.g. all Hilbert spaces are
finite-dimensional. In the class of c,-barrelled spaces these two concepts of
limited sets of course coincide. If E is a Fréchet space, then E/'g isa DF-space
which in turn is a quasi-normable space. For a Fréchet space E we obtain by
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the Eberlein-Smulian theorem [6, 9.8.3] that E has the Schur property iff every
relatively weakly compact subset of E is relatively compact.

Proposition 5. Let E be a quasi-complete space. Then E is semireflexive if it
is a % -space and every bounded subset of E is limited.

Proof. Assume that E is a #-space and every bounded subset B of E is
limited. Since every Rosenthal operator factors through a Banach space not
containing /; [2] it follows immediately that E is a #-space iff it has a zero-
basis ?/E such that all the Banach spaces EU , Ue ?/E , do not contain a copy
of /,. Hence, since ¢, (B) is limited in EU for every U € %, , it follows from
Proposition 7 in [1] that ¢, (B) is relatively weakly compact in EU for every
U € % . Since E is quasi-complete, this means that E is semi-reflexive by
Proposition 7.5.1 in [7].

Next we want to point out that there exists a Frécet-Montel space which is
not a #-space. This means that the property that every bounded subset of a
Fréchet space E is limited does not imply that E is a %#-space. Indeed, let F
denote Kéthe’s example of a Fréchet-Montel space have /; as a quotient space
[6, 11.6.4]. Every quotient of a #-space is a #-space by Proposition 21.1.5
in [6]. Since a Banach space is a %-space iff it does not contain a copy of /,,
we get that E is not a #-space. But, if E is a Fréchet space such that every
bounded subset in E is limited, then for every A € B there exists a B € %,
A C B, such that i,,: E, — Ep is Rosenthal. In fact, every limited subset
of a Fréchet space is conditionally weakly compact [9]. Hence every bounded
subset of E is conditionally weakly compact. Now the statement follows from
Theorem 7.3.3 in [7].

In order to prove our main result we need the following extension of Tietze’s
theorem due to J. Dugundji [3): Let E be an arbitrary metric space, A a closed
subset of E, G a Ics and f: A — G a continuous function. Then there exists
a continuous extension F: E — G of f such that F(E) is contained in the
convex hull of f(A).

Proposition 6. Let E be a Fréchet space. Then E is Montel iff every bounded
continuous function from E into c, maps every absolutely convex closed bounded
subset of E into a relatively compact subset of c,, .

Proof. If E is Montel, then every closed bounded subset of E is compact.
Since the continuous image of a compact set is compact, the assertion is proved.
Conversely, suppose that the condition is fulfilled. Since a Fréchet space E is
Montel iff E;, is Schwartz (Proposition 4), we get by Proposition 1 (i) that E is
Montel, if every A4 € &, is limited in the Banach space E, for some B € %,
with 4 C B. In [1] J. Bourgain and J. Diestel have noticed that A4 is limited
in Eg iff for every T € L(E,c,) we have that T(A4) is relatively compact
in ¢,. Now let 4 € %, . Since E is Fréchet there is a countable zero-basis
of closed, absolutely convex zero-neighborhoods (U,) in E, and for every n
there exists a «, > 0 such that 4 C «,U,. We now choose B, > a, such
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that the sequence (a,/f,) tends to zero and put B = N, 8,U,. Then B e By
and 4 C B. Given ¢ > 0 there is a positive integer j such that o, < &8,
for n > j. Hence A C ¢f,U, for n > j. Next, we have that ﬂfl;:sﬂnUn
is a zero-neighborhood in E and consequently there is a positive integer m
with U c(/Z eB,U,. Then AnU, C ef,U, forall n,ie. ANU, CeB.
This means that the Banach space E, induces on A the same topology as E.
Let now T € L(Eg,c,) be arbitrary. The restriction map T|4: 4 — ¢, is
continuous, when A4 is endowed with the topology induced by E. Since A4
is bounded in E,, T(A) is also bounded in ¢,. Now we get by the above
extension theorem that there exists a continuous function F: E — ¢, which
maps E into a bounded subset ¢,. Hence T(A4) = F(A) is relatively compact
in ¢, by the assumption. Thus we have proved that E is Montel.

In the next corollary we give a positive answer to the analogue of Jarchow’s
question for bounded continuous functions. We use the well-known fact that
a bounded subset 4 of ¢, is relatively compact iff sup, |e:,(x)| — 0, when
n — oo, where e is the standard basis in /, .

Corollary 7. Let E be a Fréchet space. Then E is Montel iff every sequence
in Cb(E ) that converges to zero in the compact-open topology also converges
uniformly to zero on absolutely convex closed bounded subsets of E .

Proof. Let B € %, and let f: E — ¢, be a bounded continuous function.
Put g, = e; o f, where e,', is the standard basis in /,. Then g, € Cb(E ) and
g, — 0 in Cb(E)Co, since if K C E is compact, then f(K) is compact in
¢, and consequently sup, ., |g,(x)| — O, when n — co. By the assumption

we have that sup, g Ie;(f(x))| — 0, when n — oo. This means that f(B) is
relatively compact in ¢,. The converse implication is obvious.

Let E be a Fréchet space and suppose that every Cb(E )eo-null sequence in

Cb(E ) converges uniformly to zero on absolutely convex closed bounded subsets
of E. Then E is a Fréchet-Montel space, and consequently separable. Hence
C(E),, is ultrabornological and separable, since E is realcompact. Notice also
that a metrizable space of nonmeasurable cardinal is realcompact and that the
subspace Cb(R)w of C(R),, is not barrelled, since {f € C’(R): |f(x) <1,
X € R} is a barrel but not a zero-neighborhood.

We conclude this note by a result concerning the ideal of Grothendieck op-
erators. Let £ and F be Banach spaces. An operator 7: E — F is called a
Grothendieck operator, if every weak*-null sequence (y,) in F' is mapped by
T' into a weak-null sequence (7”(y.)) in E'. If T is the identity, then E isa
Grothendieck space. The Grothendieck operators between Banach spaces form
a surjective ideal & . Notice that every Grothendieck operator is limited, if E'
has the Schur property.

The following result can be proved in the same way as Theorem 2.1 in [4].
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Proposition 8. Let E and F be Banach spaces and G a Banach space contain-
ing a copy of ¢,. If T® id;: E®,G — F&,G is a Grothendieck operator, then
T: E— F islimited.

Since every % im-space is a Schwartz space by Corollary 2 in [8] we get by the
well-known representation of e-tensor products as projective limits [6,16.3.3]
the following:

Corollary 9. Let E be a Ics and G a Banach space containing a copy of c,. If
E®,G is a Z-space, then E is a Schwartz space.
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