A NOTE ON FRÉCHET-MONTEL SPACES

MIKAEL LINDSTRÖM

(Communicated by William J. Davis)

ABSTRACT. Let E be a Fréchet space and let $C^b(E)$ denote the vector space of all bounded continuous functions on E. It is shown that the following statements are equivalent: (i) E is Montel. (ii) Every bounded continuous function from E into c_0 maps every absolutely convex closed bounded subset of E into a relatively compact subset c_0 . (iii) Every sequence in $C^b(E)$ that converges to zero in the compact-open topology also converges uniformly to zero on absolutely convex closed bounded subsets of E.

1. Introduction

It is well known that a Fréchet space E is Montel iff it is separable and every weak*-null sequence in E' converges uniformly to zero on bounded subsets of E. Because of the Josefson-Nissenzweig theorem H. Jarchow asked in [6, p. 247] if this result is true without the separability condition on E. The property that every weak*-null sequence in E' converges uniformly to zero on bounded subsets of E holds iff every continuous linear mapping from E into c_0 maps every bounded subset of E into a relatively compact subset of E. In this note we prove that a Fréchet space E is Montel iff every bounded continuous function from E into e_0 maps every absolutely convex closed bounded subset of E into a relatively compact subset of e_0 . Using this result, we obtain that a Fréchet space e_0 is Montel iff every sequence in e_0 that converges to zero in the compact-open topology also converges uniformly to zero on absolutely convex closed bounded subsets of E.

For basic definitions and notations not given below, see[6]. For a Hausdorff locally convex space (short lcs) E, \mathscr{U}_E denotes a fundamental system of absolutely convex closed neighbourhoods of zero in E. For $U \in \mathscr{U}_E$, we write E_U for the normed space canonically associated with U and φ_U for the corresponding quotient mapping $E \to E_U$. We shall also consider φ_U as a map from E into \widehat{E}_U the completion of E_U . Let $C^b(E)$ be the vector space of all bounded continuous functions on E. By E' we mean the topological dual of E. For E lcs we take the notations E'_{pc} and E'_{β} , if E' is equipped with the

Received by the editors February 14, 1989 and, in revised form, May 7, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 46A14; Secondary 46A06.

topology of uniform convergence on the precompact and on the bounded subsets of E, respectively. If every null sequence in $\sigma(E', E)$ is equicontinuous, then E is called c_0 -barrelled. Every barrelled space is c_0 -barrelled. Further let \mathcal{B}_E denote a fundamental system of absolutely convex closed bounded subsets of E. When $A \in \mathscr{B}_E$ let E_A denote the associated normed space. If A, $B \in \mathscr{B}_E$ and $A \subset B$ then there is a unique continuous linear extension $i_{AB}\colon \widehat{E}_A \to \overline{\widehat{E}}_B$ of the canonical inclusion $E_A \to E_B$ to the completions. If E is a quasi-complete space, then E_A is a Banach space for every $A \in \mathscr{B}_E$.

2. A CHARACTERIZATION OF FRÉCHET-MONTEL SPACES

Let E be a lcs and let $\mathscr A$ be an ideal of Banach space operators. Then E is called an \mathscr{A} -space [6], if for each $U \in \mathscr{U}_E$ there exists a $V \in \mathscr{U}_E$ with $V \subset U$ such that $\varphi_{UV} \in \mathscr{A}(\widehat{E}_V, \widehat{E}_U)$. A bounded operator from a Banach space into another Banach space is called a Rosenthal operator, if the image of the unit ball is conditionally weakly compact. Recall that a subset B of a lcs is called conditionally weakly compact, if every sequence in B has a weak Cauchy subsequence. The Rosenthal operators between Banach spaces form a closed, surjective and injective ideal \mathcal{R} . In [9] we have called a subset B of a lcs E limited, if every equicontinuous, $\sigma(E', E)$ -null sequence in E' converges uniformly to zero on B. Thus every bounded subset of E is limited iff every equicontinuous, $\sigma(E', E)$ -null sequence in E' converges uniformly to zero on bounded subsets of E. Let E and F be Banach spaces. A bounded operator $T: E \to F$ is called *limited* [1], if T takes the unit ball of E to a limited subset of F. The limited operators between Banach spaces form a closed, surjective ideal $\mathcal{L}im$ that is not injective. The injective hull of $\mathcal{L}im$ is \mathcal{R} [9]. In [8] we have proved that the product of three limited operators is compact. We start with the following important consequences of this result:

Proposition 1. Let E be a lcs. Then:

- (i) E'_{B} is a Schwartz space iff for every $A \in \mathscr{B}_{E}$ there exists a $B \in \mathscr{B}_{E}$, $\stackrel{\frown}{A}\subset B$, such that $i_{AB}\colon \widehat{E}_A\to \widehat{E}_B$ is limited. (ii) E is a Schwartz space iff it is quasi-normable and every bounded subset
- of E is limited.

Proof. (i) By [10] E'_{β} is a Schwartz space iff for every $A \in \mathscr{B}_{E}$ there exists a $B\in\mathscr{B}_E$, $A\subset B$, such that $i_{AB}\colon\widehat{E}_A\to\widehat{E}_B$ is compact. Thus the statement is a consequence of the fact that the product of three limited operators is compact. (ii) This is Corollary 3 in [8] which says that E is Schwartz iff it is quasinormable and every equicontinuous, weak*-null sequence in E' is also E'_R -null convergent.

For our next proposition we need some lemmata.

Lemma 2. Let E be a reflexive space such that E'_{pc} is c_0 -barrelled. Then every bounded subset of E'_{β} is limited.

Proof. Let $A \subset E'_{\beta}$ be bounded. Then A is equicontinuous, since E is quasibarrelled. By Alaoglu-Bourbaki's theorem A is relatively compact in E'_{pc} , and consequently limited in E'_{pc} [9]. Now let (u_n) be an equicontinuous, weak*-null sequence in $(E'_{\beta})'$. Since $E = (E'_{\beta})'$ implies that $E = (E'_{pc})'$ we get that (u_n) is an equicontinuous, weak*-null sequence in $(E'_{pc})'$. Hence (u_n) converges uniformly to zero on A, i.e. A is limited in E'_{β} .

Lemma 3. Let E be a quasi-complete space. Then E has the Schur property, i.e. every weak-null sequence (x_n) in E converges to zero in E, iff E'_{pc} is c_0 -barrelled.

Proof. Since E is quasi-complete, $E=(E'_{pc})'$. Suppose that E'_{pc} is c_0 -barrelled. Let $x_n\to 0$ in $\sigma(E,E')=\sigma((E'_{pc})',E'_{pc})$. Hence $x_n\in K^{\circ\circ}$, where K is a relatively compact subset of E. This implies that $x_n\to 0$ in E, since the topology of E and $\sigma(E,E')$ coincide on the compact subset $K^{\circ\circ}$ of E. Conversely, suppose that E has the Schur property. Let $u_n\to 0$ in $\sigma((E'_{pc})',E'_{pc})=\sigma(E,E')$. Then $K:=\{u_n\colon n\in N\}$ is a relatively compact subset of E and hence equicontinuous.

Proposition 4. Let E be a quasi-complete, barrelled space such that E'_{β} is quasi-normable. The following statements are equivalent:

- (i) Every bounded subset of E'_{β} is limited.
- (ii) E'_{R} is Schwartz.
- (iii) E' is Montel.
- (iv) E is reflexive and E'_{nc} is c_0 -barrelled.

Proof. (i) \Leftrightarrow (ii) by Proposition 1 (ii). Since every bounded subset of E is precompact, when E'_{β} is Schwartz [10], (ii) \Rightarrow (iii). (iii) \Rightarrow (iv) by Lemma 3. (iv) \Rightarrow (i) by Lemma 2.

This proposition is not valid if we drop the assumption that E is quasibarrelled. This follows from the following example constructed by A. Garcia and J. Gómez in [5]. Let F be the Banach space l_{∞} , (x_n) a weak null sequence in F, such that $\|x_n\|=1$ for each n and $\xi=\{S\subset F\colon S \text{ is finite or }S=\{x_n\colon n\in N\}\}$. Let E be the space F' endowed with the locally convex topology, having as a subbase at zero the sets S^0 , when S ranges over ξ . Then $E'_{\beta}=l_{\infty}$, E is semi-reflexive with the Schur property but not semi-Montel. The Schur property of E follows from the fact that l_{∞} is a Grothendieck space with the Dunford-Pettis property.

If the equicontinuity is removed from the definition of a limited set, then relatively compactness does not imply limitedness. This follows from the proof of Lemma 2, since otherwise we would obtain that e.g. all Hilbert spaces are finite-dimensional. In the class of c_0 -barrelled spaces these two concepts of limited sets of course coincide. If E is a Fréchet space, then E'_{β} is a DF-space which in turn is a quasi-normable space. For a Fréchet space E we obtain by

the Eberlein-Smulian theorem [6, 9.8.3] that E has the Schur property iff every relatively weakly compact subset of E is relatively compact.

Proposition 5. Let E be a quasi-complete space. Then E is semireflexive if it is a \mathcal{R} -space and every bounded subset of E is limited.

Proof. Assume that E is a \mathscr{R} -space and every bounded subset B of E is limited. Since every Rosenthal operator factors through a Banach space not containing l_1 [2] it follows immediately that E is a \mathscr{R} -space iff it has a zerobasis \mathscr{U}_E such that all the Banach spaces \widehat{E}_U , $U \in \mathscr{U}_E$, do not contain a copy of l_1 . Hence, since $\varphi_U(B)$ is limited in \widehat{E}_U for every $U \in \mathscr{U}_E$, it follows from Proposition 7 in [1] that $\varphi_U(B)$ is relatively weakly compact in \widehat{E}_U for every $U \in \mathscr{U}_E$. Since E is quasi-complete, this means that E is semi-reflexive by Proposition 7.5.1 in [7].

Next we want to point out that there exists a Frécet-Montel space which is not a \mathcal{R} -space. This means that the property that every bounded subset of a Fréchet space E is limited does not imply that E is a \mathcal{R} -space. Indeed, let E denote Köthe's example of a Fréchet-Montel space have l_1 as a quotient space [6, 11.6.4]. Every quotient of a \mathcal{R} -space is a \mathcal{R} -space by Proposition 21.1.5 in [6]. Since a Banach space is a \mathcal{R} -space iff it does not contain a copy of l_1 , we get that E is not a \mathcal{R} -space. But, if E is a Fréchet space such that every bounded subset in E is limited, then for every $A \in \mathcal{B}_E$ there exists a $B \in \mathcal{B}_E$, $A \subset B$, such that $i_{AB}: E_A \to E_B$ is Rosenthal. In fact, every limited subset of a Fréchet space is conditionally weakly compact [9]. Hence every bounded subset of E is conditionally weakly compact. Now the statement follows from Theorem 7.3.3 in [7].

In order to prove our main result we need the following extension of Tietze's theorem due to J. Dugundji [3]: Let E be an arbitrary metric space, A a closed subset of E, G a lcs and $f: A \rightarrow G$ a continuous function. Then there exists a continuous extension $F: E \rightarrow G$ of f such that F(E) is contained in the convex hull of f(A).

Proposition 6. Let E be a Fréchet space. Then E is Montel iff every bounded continuous function from E into c_0 maps every absolutely convex closed bounded subset of E into a relatively compact subset of c_0 .

Proof. If E is Montel, then every closed bounded subset of E is compact. Since the continuous image of a compact set is compact, the assertion is proved. Conversely, suppose that the condition is fulfilled. Since a Fréchet space E is Montel iff E'_{β} is Schwartz (Proposition 4), we get by Proposition 1 (i) that E is Montel, if every $A \in \mathscr{B}_E$ is limited in the Banach space E_B for some $B \in \mathscr{B}_E$ with $A \subset B$. In [1] J. Bourgain and J. Diestel have noticed that A is limited in E_B iff for every $T \in L(E_B, c_0)$ we have that T(A) is relatively compact in c_0 . Now let $A \in \mathscr{B}_E$. Since E is Fréchet there is a countable zero-basis of closed, absolutely convex zero-neighborhoods (U_n) in E, and for every n there exists a $\alpha_n > 0$ such that $A \subset \alpha_n U_n$. We now choose $\beta_n \geq \alpha_n$ such

that the sequence (α_n/β_n) tends to zero and put $B=\bigcap_n\beta_nU_n$. Then $B\in\mathscr{B}_E$ and $A\subset B$. Given $\varepsilon>0$ there is a positive integer j such that $\alpha_n\leq \varepsilon\beta_n$ for $n\geq j$. Hence $A\subset \varepsilon\beta_nU_n$ for $n\geq j$. Next, we have that $\bigcap_{n=1}^{j-1}\varepsilon\beta_nU_n$ is a zero-neighborhood in E and consequently there is a positive integer m with $U_m\subset\bigcap_{n=1}^{j-1}\varepsilon\beta_nU_n$. Then $A\cap U_m\subset\varepsilon\beta_nU_n$ for all n, i.e. $A\cap U_m\subset\varepsilon B$. This means that the Banach space E_B induces on A the same topology as E. Let now $T\in L(E_B,c_0)$ be arbitrary. The restriction map $T|A\colon A\to c_0$ is continuous, when A is endowed with the topology induced by E. Since A is bounded in E_B , T(A) is also bounded in c_0 . Now we get by the above extension theorem that there exists a continuous function $F\colon E\to c_0$ which maps E into a bounded subset c_0 . Hence T(A)=F(A) is relatively compact in c_0 by the assumption. Thus we have proved that E is Montel.

In the next corollary we give a positive answer to the analogue of Jarchow's question for bounded continuous functions. We use the well-known fact that a bounded subset A of c_0 is relatively compact iff $\sup_{x \in A} |e_n'(x)| \to 0$, when $n \to \infty$, where e_n' is the standard basis in l_1 .

Corollary 7. Let E be a Fréchet space. Then E is Montel iff every sequence in $C^b(E)$ that converges to zero in the compact-open topology also converges uniformly to zero on absolutely convex closed bounded subsets of E.

Proof. Let $B \in \mathscr{B}_E$ and let $f \colon E \to c_0$ be a bounded continuous function. Put $g_n = e'_n \circ f$, where e'_n is the standard basis in l_1 . Then $g_n \in C^b(E)$ and $g_n \to 0$ in $C^b(E)_{co}$, since if $K \subset E$ is compact, then f(K) is compact in c_0 and consequently $\sup_{x \in K} |g_n(x)| \to 0$, when $n \to \infty$. By the assumption we have that $\sup_{x \in B} |e'_n(f(x))| \to 0$, when $n \to \infty$. This means that f(B) is relatively compact in c_0 . The converse implication is obvious.

Let E be a Fréchet space and suppose that every $C^b(E)_{co}$ -null sequence in $C^b(E)$ converges uniformly to zero on absolutely convex closed bounded subsets of E. Then E is a Fréchet-Montel space, and consequently separable. Hence $C(E)_{co}$ is ultrabornological and separable, since E is realcompact. Notice also that a metrizable space of nonmeasurable cardinal is realcompact and that the subspace $C^b(R)_{co}$ of $C(R)_{co}$ is not barrelled, since $\{f \in C^b(R) \colon |f(x)| \le 1, x \in R\}$ is a barrel but not a zero-neighborhood.

We conclude this note by a result concerning the ideal of Grothendieck operators. Let E and F be Banach spaces. An operator $T: E \to F$ is called a Grothendieck operator, if every weak*-null sequence (y'_n) in F' is mapped by T' into a weak-null sequence $(T'(y'_n))$ in E'. If T is the identity, then E is a Grothendieck space. The Grothendieck operators between Banach spaces form a surjective ideal \mathscr{G} . Notice that every Grothendieck operator is limited, if E' has the Schur property.

The following result can be proved in the same way as Theorem 2.1 in [4].

Proposition 8. Let E and F be Banach spaces and G a Banach space containing a copy of c_0 . If $T \otimes id_G \colon E \hat{\otimes}_{\varepsilon} G \to F \hat{\otimes}_{\varepsilon} G$ is a Grothendieck operator, then $T \colon E \to F$ is limited.

Since every $\mathcal{L}im$ -space is a Schwartz space by Corollary 2 in [8] we get by the well-known representation of ε -tensor products as projective limits [6,16.3.3] the following:

Corollary 9. Let E be a lcs and G a Banach space containing a copy of c_0 . If $E \hat{\otimes}_s G$ is a \mathcal{G} -space, then E is a Schwartz space.

REFERENCES

- J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
- J. Diestel, Sequences and series in Banach spaces. Graduate Texts in Math., vol 92, Springer, Berlin 1984.
- 3. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
- 4. F. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), 479-486.
- 5. A. Garcia and J. Gomez, Dunford-Pettis property, Archiv Math. 49 (1987), 326-332.
- 6. H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.
- 7. H. Junek, Locally convex spaces and operator ideals, Teubner, Leipzig, 1983.
- 8. M. Lindström, A characterization of Schwartz spaces, Math. Z. 198 (1988), 423-430.
- 9. M. Lindström and Th. Schlumprecht, On limitedness in locally convex spaces, Archiv Math. 53 (1989), 65-74.
- 10. T. Terzioglu, On Schwartz spaces, Math. Ann. 182 (1969), 236-242.

DEPARTMENT OF MATHEMATICS, ABO AKADEMI, SF-20500 ABO, FINLAND