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A NOTE ON FRÉCHET-MONTEL SPACES

MIKAEL LINDSTRÖM

(Communicated by William J. Davis)

Abstract. Let £ be a Fréchet space and let Cb(E) denote the vector space

of all bounded continuous functions on E . It is shown that the following

statements are equivalent: (i) E is Montel. (ii) Every bounded continuous

function from E into Co maps every absolutely convex closed bounded subset

of E into a relatively compact subset cq . (iii) Every sequence in Cb(E) that

converges to zero in the compact-open topology also converges uniformly to

zero on absolutely convex closed bounded subsets of E .

1. Introduction

It is well known that a Fréchet space E is Montel iff it is separable and every

weak*-null sequence in E' converges uniformly to zero on bounded subsets of

E. Because of the Josefson-Nissenzweig theorem H. Jarchow asked in [6, p.

247] if this result is true without the separability condition on E. The property

that every weak*-null sequence in E' converges uniformly to zero on bounded

subsets of E holds iff every continuous linear mapping from E into c0 maps

every bounded subset of E into a relatively compact subset of c0. In this

note we prove that a Fréchet space E is Montel iff every bounded continuous

function from E into c0 maps every absolutely convex closed bounded subset

of E into a relatively compact subset of c0 . Using this result, we obtain that a

Fréchet space E is Montel iff every sequence in C (E) that converges to zero

in the compact-open topology also converges uniformly to zero on absolutely

convex closed bounded subsets of E.

For basic definitions and notations not given below, see[6]. For a Hausdorff

locally convex space (short les) E, %E denotes a fundamental system of ab-

solutely convex closed neighbourhoods of zero in E. For U G f¿E , we write

Ey for the normed space canonically associated with U and <pv for the cor-

responding quotient mapping E —» Ev . We shall also consider (pv as a map

from E into Ev the completion of Ev . Let C (E) be the vector space of all

bounded continuous functions on E. By E we mean the topological dual of

E . For E les we take the notations E    and EB , if E   is equipped with the
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topology of uniform convergence on the precompact and on the bounded sub-

sets of E, respectively. If every null sequence in o(E',E) is equicontinuous,

then E is called cQ-barrelled. Every barrelled space is c0-barrelled. Further

let 3§E denote a fundamental system of absolutely convex closed bounded sub-

sets of E. When A G 38E let EA denote the associated normed space. If

A, B G 38E and A c B then there is a unique continuous linear extension

i ab '■ Ea ~~* eb °f tne canonical inclusion EA —* EB to the completions. If E

is a quasi-complete space, then EA is a Banach space for every A G 3§E .

2.  A CHARACTERIZATION OF FrÉCHET-MONTEL SPACES

Let E be a les and let si be an ideal of Banach space operators. Then

E is called an sé-space [6], if for each U G %E there exists a V g %e with

V c U such that <puv G sé(Êv,Êu). A bounded operator from a Banach

space into another Banach space is called a Rosenthal operator, if the image

of the unit ball is conditionally weakly compact. Recall that a subset B of a

les is called conditionally weakly compact, if every sequence in B has a weak

Cauchy subsequence. The Rosenthal operators between Banach spaces form a

closed, surjective and injective ideal 3$ . In [9] we have called a subset B of a

lcsii limited, if every equicontinuous, o(E' ,E)-null sequence in E' converges

uniformly to zero on B. Thus every bounded subset of E is limited iff every

equicontinuous, o(E' ,E)-null sequence in E1 converges uniformly to zero on

bounded subsets of E. Let E and F be Banach spaces. A bounded operator

T: E —> F is called limited [1], if T takes the unit ball of E to a limited subset

of F. The limited operators between Banach spaces form a closed, surjective

ideal SCim that is not injective. The injective hull of S'im is 3¡t [9]. In [8]

we have proved that the product of three limited operators is compact. We start

with the following important consequences of this result:

Proposition 1. Let E be a les. Then:

(i) E'„ is a Schwartz space iff for every A G 3§E there exists a B G 3§E,

A c B, such that iAB : ÈA —y ÊB is limited.

(ii) E is a Schwartz space iff it is quasi-normable and every bounded subset

of E is limited.

Proof, (i) By [10] E'„ is a Schwartz space iff for every A G 33E there exists a

B G 3$E , A c B, such that iAB :ÊA^ÊB is compact. Thus the statement is a

consequence of the fact that the product of three limited operators is compact.

(ii) This is Corollary 3 in [8] which says that E is Schwartz iff it is quasi-

normable and every equicontinuous, weak*-null sequence in E1 is also E'B-n\ill

convergent.

For our next proposition we need some lemmata.

Lemma 2. Let E be a reflexive space such that E1 is c0-barrelled. Then every

bounded subset of E'B is limited.
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Proof. Let A c E'B be bounded. Then A is equicontinuous, since E is quasi-

barrelled. By Alaoglu-Bourbaki's theorem A is relatively compact in E1 , and

consequently limited in E' [9]. Now let (un) be an equicontinuous, weak*-

null sequence in (E'a' . Since E = (E'„)' implies that E — (E1 )' we get

that (un) is an equicontinuous, weak*-null sequence in (E1 )'. Hence (un)

converges uniformly to zero on A , i.e. A is limited in E'B .

Lemma 3. Let E be a quasi-complete space. Then E has the Schur property,

i.e. every weak-null sequence (xn) in E converges to zero in E, iff Epc is

c0-barrelled.

Proof. Since E is quasi-complete, E = (E1 )'. Suppose that E1 is c0-

barrelled. Let xn->0 in a(E ,E') = o((E' )' ,E' ). Hence xn G K°°, where

K is a relatively compact subset of E. This implies that xn —► 0 in E,

since the topology of E and o(E ,E') coincide on the compact subset K°°

of E. Conversely, suppose that E has the Schur property. Let un —> 0 in

a((E' )',E' ) = o(E,E'). Then K := {un: n G N} is a relatively compact

subset of E and hence equicontinuous.

Proposition 4. Let E be a quasi-complete, barrelled space such that E'„ is quasi-

normable. The following statements are equivalent:

(i) Every bounded subset of E'„ is limited.

(ii) E'B is Schwartz.

(iii) E is Montel.

(iv) E is reflexive and E'   is c0-barrelled.

Proof, (i) <r> (ii) by Proposition 1 (ii). Since every bounded subset of E is

precompact, when E'B is Schwartz [10], (ii) => (iii). (iii) => (iv) by Lemma 3.

(iv) => (i) by Lemma 2.

This proposition is not valid if we drop the assumption that E is quasi-

barrelled. This follows from the following example constructed by A. Garcia and

J. Gómez in [5]. Let F be the Banach space /^ , (xn) a weak null sequence in

F , such that ||xj| = 1 for each n and Ç = {S c F: S is finite or 5 = {xn : n G

N}} . Let E be the space F1 endowed with the locally convex topology, having

as a subbase at zero the sets S , when S ranges over £,. Then E'„ = /¿, E is

semi-reflexive with the Schur property but not semi-Montel. The Schur property

of E follows from the fact that /^ is a Grothendieck space with the Dunford-

Pettis property.

If the equicontinuity is removed from the definition of a limited set, then

relatively compactness does not imply limitedness. This follows from the proof

of Lemma 2, since otherwise we would obtain that e.g. all Hubert spaces are

finite-dimensional. In the class of c0-barrelled spaces these two concepts of

limited sets of course coincide. If E is a Fréchet space, then E'B is a D F-space

which in turn is a quasi-normable space. For a Fréchet space E we obtain by
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the Eberlein-Smulian theorem [6, 9.8.3] that E has the Schur property iff every

relatively weakly compact subset of E is relatively compact.

Proposition 5. Let E be a quasi-complete space. Then E is semireflexive if it

is a 31-space and every bounded subset of E is limited.

Proof. Assume that E is a 3$'-space and every bounded subset B of E is

limited. Since every Rosenthal operator factors through a Banach space not

containing /, [2] it follows immediately that E is a 31'-space iff it has a zero-

basis %E such that all the Banach spaces Ev', U G %E , do not contain a copy

of /, . Hence, since (pv(B) is limited in Ev for every U G %E , it follows from

Proposition 7 in [1] that (pv(B) is relatively weakly compact in Ev for every

U G%E. Since E is quasi-complete, this means that E is semi-reflexive by

Proposition 7.5.1 in [7].

Next we want to point out that there exists a Frécet-Montel space which is

not a 3$'-space. This means that the property that every bounded subset of a

Fréchet space E is limited does not imply that E is a 3?-space. Indeed, let E

denote Köthe's example of a Fréchet-Montel space have lx as a quotient space

[6, 11.6.4]. Every quotient of a 3?-space is a ^-space by Proposition 21.1.5

in [6]. Since a Banach space is a 3$'-space iff it does not contain a copy of /, ,

we get that E is not a ^-space. But, if E is a Fréchet space such that every

bounded subset in E is limited, then for every A G 3§E there exists a B g 3§e ,

A c B, such that iAB : EA -* EB is Rosenthal. In fact, every limited subset

of a Fréchet space is conditionally weakly compact [9]. Hence every bounded

subset of E is conditionally weakly compact. Now the statement follows from

Theorem 7.3.3 in [7].

In order to prove our main result we need the following extension of Tietze's

theorem due to J. Dugundji [3]: Let E be an arbitrary metric space, A a closed

subset of E, G a les and f: A —► G a continuous function. Then there exists

a continuous extension F: E —> G of f such that F(E) is contained in the

convex hull of f(A).

Proposition 6. Let E be a Fréchet space. Then E is Montel iff every bounded

continuous function from E into c0 maps every absolutely convex closed bounded

subset of E into a relatively compact subset of c0 .

Proof. If E is Montel, then every closed bounded subset of E is compact.

Since the continuous image of a compact set is compact, the assertion is proved.

Conversely, suppose that the condition is fulfilled. Since a Fréchet space E is

Montel iff E'„ is Schwartz (Proposition 4), we get by Proposition 1 (i) that E is

Montel, if every A G 3§E is limited in the Banach space EB for some B g 3$e

with A c B. In [1] J. Bourgain and J. Diestel have noticed that A is limited

in EB iff for every T G L(EB,cQ) we have that T(A) is relatively compact

in cQ. Now let A g 3èE . Since E is Fréchet there is a countable zero-basis

of closed, absolutely convex zero-neighborhoods ( Un ) in E, and for every n

there exists a an > 0 such that A c a„Un.  We now choose ßn > an  such
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that the sequence (an/' ßn) tends to zero and put B — f]n ß„Un. Then B g 3§e

and A c B.  Given e > 0 there is a positive integer / such that an < eßn

for n > j. Hence A c £ß„Un for n > j. Next, we have that f]«Ii eßn^n

is a zero-neighborhood in E and consequently there is a positive integer m

with Um c OC! eßn Un . Then AnUmc eßn Un for all n , i.e. AnUmceB.

This means that the Banach space EB induces on A the same topology as E.

Let now T G L(EB,c0) be arbitrary. The restriction map T\A: A —» c0 is

continuous, when A is endowed with the topology induced by E. Since A

is bounded in EB, T(A) is also bounded in cQ. Now we get by the above

extension theorem that there exists a continuous function F: E —» cQ which

maps E into a bounded subset c0 . Hence T(A) = F (A) is relatively compact

in c0 by the assumption. Thus we have proved that E is Montel.

In the next corollary we give a positive answer to the analogue of Jarchow's

question for bounded continuous functions. We use the well-known fact that

a bounded subset A of c0 is relatively compact iff supx£/1 |e^(x)| -t 0, when

n —> oo, where e'n is the standard basis in /, .

Corollary 7. Let E be a Fréchet space. Then E is Montel iff every sequence

in C (E) that converges to zero in the compact-open topology also converges

uniformly to zero on absolutely convex closed bounded subsets of E.

Proof. Let B g 33e and let f:E-*c0 be a bounded continuous function.

Put gn = e'n o f, where e'n is the standard basis in lx . Then gn G C (E) and

gn —y 0 in C (E)co, since if K c E is compact, then f(K) is compact in

c0 and consequently sup^^. |g„(.x)| -* 0, when n —» oo. By the assumption

we have that sup^^ |^(/(a:))| —<• 0, when n-»oo. This means that f(B) is

relatively compact in cQ . The converse implication is obvious.

Let £ be a Fréchet space and suppose that every C (£)f0-null sequence in

C (E) converges uniformly to zero on absolutely convex closed bounded subsets

of E. Then E is a Fréchet-Montel space, and consequently separable. Hence

C(E)C0 is ultrabornological and separable, since E is realcompact. Notice also

that a metrizable space of nonmeasurable cardinal is realcompact and that the

subspace Cb(R)co of C(R)co is not barrelled, since {/ G Cb(R): \f(x)\ < 1 ,

x G R} is a barrel but not a zero-neighborhood.

We conclude this note by a result concerning the ideal of Grothendieck op-

erators. Let E and F be Banach spaces. An operator T: E —> F is called a

Grothendieck operator, if every weak*-null sequence (y'n) in F1 is mapped by

T' into a weak-null sequence (T'(y'n)) in É . If T is the identity, then £ is a

Grothendieck space. The Grothendieck operators between Banach spaces form

a surjective ideal ^. Notice that every Grothendieck operator is limited, if E'

has the Schur property.

The following result can be proved in the same way as Theorem 2.1 in [4].
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Proposition 8. Let E and F be Banach spaces and G a Banach space contain-

ing a copy of c0. If T® idG: E®EG —> F<g>£G is a Grothendieck operator, then

T: E —► F is limited.

Since every Jîfim-space is a Schwartz space by Corollary 2 in [8] we get by the

well-known representation of e-tensor products as projective limits [6,16.3.3]

the following:

Corollary 9. Let E be a les and G a Banach space containing a copy of cQ. If

E®fi is a espace, then E is a Schwartz space.

References

1. J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119(1984),

55-58.

2. J. Diestel, Sequences and series in Banach spaces. Graduate Texts in Math., vol 92, Springer,

Berlin 1984.

3. J. Dugundji, An extension ofTietze's theorem, Pacific J. Math. 1 (1951), 353-367.

4. F. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267

(1984), 479-486.

5. A. Garcia and J. Gomez, Dunford-Pettis property, Archiv Math. 49 (1987), 326-332.

6. H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.

7. H. Junek, Locally convex spaces and operator ideals, Teubner, Leipzig, 1983.

8. M. Lindström, A characterization of Schwartz spaces, Math. Z. 198 (1988), 423-430.

9. M. Lindström and Th. Schlumprecht, On limitedness in locally convex spaces, Archiv Math.

53(1989), 65-74.

10. T. Terzioglu, On Schwartz spaces, Math. Ann. 182 (1969), 236-242.

Department of Mathematics, Âbo Akademi, SF-20500 Àbo, Finland
.


