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DECREASING CHAINS WITHOUT LOWER BOUNDS

IN THE RUDIN-FROLIK ORDER

EVA BUTKOVICOVÁ

(Communicated by Dennis Burke)

Abstract. We prove that for every uncountable cardinal less than continuum

there exists a chain in the Rudin-Frolik order of ßto - co isomorphic to the

inverse order of this cardinal and without a lower bound.

1. Introduction

In [vD] E. K. van Douwen constructed a sequence (D „ : ß < c) of countable

discrete subsets of ßco such that

(1.1) (Ve , n < c) (e < ri D„QD( D,

(1.2)
/?<c

= 1

He asked whether for every cardinal p < c of uncountable cofinality such

sequences exist of length p . The question is closely related to the Rudin-Frolik

order <RF of ultrafilters on to. One readily sees that if (Z>„ : ß < p) is such a

sequence and p is the point in the intersection ["!«<« Dr lnen (^(^« > P) '■ ß <

p) is a strictly decreasing <RI. -chain in ßco without lower bound. The chains

bound, the aim of this paper is to prove that such chains exist; we prove

(1.3) Theorem. For every cardinal p between co and c there exists a strictly

decreasing <RF-chain (p„ : ß < p) without an <RI,-lower bound.

Let us note that this shows that such a chain exists whenever co < p < c: in

[BB] such a sequence was constructed for p = co, and of course van Douwen's

construction mentioned above gives such a sequence for p = c.
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2. Definitions and preliminaries

We shall use standard set-theoretical notation.

For an arbitrary set I, we put [I]<w = { A Ç Z: \A\ < co } . For & ç 3?(co)

we put

(2.1) W)) = [A Ceo: 3He[.5r]<0J,f)HCA)t .

Thus, if y is centered then  ((y ))  is the filter generated by AF, otherwise

«y))=^(w).
The Fréchet filter on co is denoted by F . Ultrafilters are assumed to be on

co. We reserve the capitals X and F for sets of ultrafilters. When we say

"countable" we mean "countably infinite". If I is a set then Fn(Z, co) denotes

the set of finite partial functions from I to co. We let c denote the cardinality

of the continuum.

(2.2) A set {,9~n : « < co } of filters is said to be discrete if there exists

a partition {An: n < co} of co such that An e &~n for all

« < co.

(2.3) Let y D F be a filter on co. A family {Ai n: c; e I, n e co} ç

3a(co) is called an independent family with respect to A? if the

following holds:

(2.3.1) For each £ the family {A( n: « eco} is a partition of co.

(2.3.2) For every H e AF and every  tp e Fn(Z, co)  the intersection

A(q>)r\H is nonempty. Here

a(<p)= n ¿t,?«)-
¿€dom <p

There exists an independent family {A^ n: t\ e t,n e co} with respect to

the filter F, see for example [K] or [EKa]. An easy example for topologists:

identify co with a countable dense subset D of the product cco,andput A, n =

{/€/>:/(£) = «}.
Independent families are used in inductive constructions, they help to make

sure that the induction in question can be carried out till the end. The con-

struction given in this paper hopefully shows how useful independent families

can be. Some basic properties that will be useful are:

(2.4) If {A* n: £, e I, n e co) is independent with respect to SF, if

tp e Fn(Z, co), and if M D A(tp) then the family {A( n : £ e

Z-dom tp , n eco} is independent with respect to ((/u{M})).

(2.5) If {A, n: ¿l e I, n e co} is independent with respect to A?

then y is not an ultrafilter because for every « and every ¿¡

both Ac n <£ A?  and co-Ai n <£ A? .

Now we turn to the definition of the Rudin-Frolik order <RF of nontrivial

ultrafilters on co.



DECREASING CHAINS WITHOUT LOWER BOUNDS IN THE RUDIN-FROLÍK ORDER 253

(2.6) Let p, q e ßco - co . We say p <RF q if there exists a discrete

set X = {xn : « < co} in ßco such that

A e q = {n: A e xn} e p.

The ultrafilter q is denoted by I.(X, p) and p is denoted by Í2(X, q). Let

us note that they generally depend on the indexing of X.

The relation <RF is reflexive and transitive but not antisymmetric. The best

one say is that if p <RF q and q <RF p then p and q are type equivalent,

which means that there is a permutation n of co such that n{p) = q .

We say p <RF q if p <RF q but not q <RF p . It is straightforward to show

that:

(2.7) p <RF q  iff there is a discrete set X ç ßco - co such that

q = Z{X,p).
Hence an ultrafilter q has an <R/r-predecessor iff there is a countable discrete

set X Ç ßco - co such that qeX~ - X .

We mention some technical properties of <RF . It is not too hard to show

that if X and F are countable subsets of ßco and XT\Y = X C\Y = 0 then

X n Y = 0 . It follows that

(2.8) [F2] If p e X n F then either p e Xn Y-Y, in which case

Sl(X,p) <RFii(Y, q), or peYnX-X, in which case Q(Y,p)

<RF Çl(X, q), or p e XCiY, in which case Çl(X, p) and

Q(Y, p) are type equivalent.

An important consequence is that the <R/,-predecessors of a point in ßco-co

are linearly ordered. Another useful fact is the following:

(2.9) If p e ßco - co and if X and F are countable discrete sets of

ultrafilters then I(A\ p) <Rt-X(F, p) iff {«: xn <RF yn) e p .

3. Plan of the proof of Theorem 1.3

Fix a cardinal p between co and c.

First we deal with the case that p has countable cofinality. Consider the

sequence (Xn : a < c) constructed by van Douwen. It is not too hard to show

that each point in \Jll<(X(t may be chosen to have character c. Fix a strictly

increasing sequence (pn : « < to) cofinal in p . Now the proof from [BB] can

be used to find a point p in Ç\n<(0X such that (£l(X , p): n < co) has no

<RF-lower bound, but then neither has (Q(A'„, p): ß < p).

The case when p has uncountable cofinality requires more work. It is evident

from (2.8) that we need a sequence (X„ : ß < p) of countable discrete sets and

a point p in ßco - co satifying:

(3.1) p^njß
p<t<

and

(3.2) ify<ß<p   then   XßCX.,-X,,.



254 EVA BUTKOVICOVÁ

The sequence (£l(X„, p): ß < p) will then be strictly decreasing with respect

to <RF . A necessary and sufficient condition that it has no <RF-lower bound

is formulated in the following lemma, where we let K = n«<„ X„.

Lemma. The sequence (£l(Xß , p): ß < p) has no <RF-lower bound if and only

if for every countable and discrete set D ç K - {p} we have p e" D.

Proof. We establish the contrapositive.

If p e Y - Y for some countable and discrete Y ç K then by (2.8)

Q(Y,p)<RFSi(Xß,p) for all ß<p.

On the other hand if F is countable and discrete and Q(F, p) <RF Cl(X„ , p)

for all ß then, again by (2.8), we must have p e Y n X ß - Xß for all ß . As Y

is countable and the cofinality of p is uncountable, we have Y n K = Y nXß

for some ß . It follows that p e Y nZí - Y.

This gives us the third condition that has to be met:

(3.3) for every countable and discrete Y ç K - {p} we have p g Y .

The aim of the rest of the paper is to construct p and (X„ : ß < p) satisfying

(3.1), (3.2), and (3.3).

4. Plan of the construction

We shall construct by induction on a < c filters 9" and 9T n forß<p

and « < co. In the end we shall let

P=U^°      and     Xß.n = U^.n-
rt<C ft<c

Let us investigate what conditions will have to be met in order that p and the

Xg n satisfy (3.1), (3.2), and (3.3). To abbreviate some formulas we will put

^«n=y for n<co.

First of all, to ensure that p and the x„ n are filters we want

(o) If a < a < c then 9? n C AFß n foxß<p and « < co.

To make sure that in the end we will have ultrafilters we let  {Mn : a <

c, a odd} enumerate APico) and we will have

(i) If a is odd then for every ß < p and « < co

^eC    or   to-Mne.^.

If we write x      = p for n < co then we can combine (3.1) and (3.2) into

(3.1a) if y < ß < p then Xß c X,, - X,,.

To ensure this we need for every a

(ii)  If y < ß < p, n < co, and A ei?ß n then E(A, y) = {/: A e^",.} is

infinite, and

(iii) If y < ß < p and i < co then there is an A e 9? ¡ such that co- Ae

9g" n for every « .
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Note that (ii) has the effect of putting 9? in the closure of {9,"¿: i < co}

and that (iii) ensures that 9a¡ is not in the closure of {9ß n: « < co} for any

i. Also note that once (iii) is satisfied for some a, it is also satisfied for all

later a , because of (o). In fact we shall take care of (iii) right at the beginning,

when a = 0 .

Unfortunately a construction like this may break down prematurely. For ex-

ample if 9" would be an ultrafilter there would be no way of guaranteeing (vii)

below anymore. To prevent this and other problems we use two independent

families, sf = {A   n : n < c, « < co} and A28 — {B   . : r¡ < c, i < co} .

During the construction we shall keep track of subsets Ia and Ja of c sat-

isfying

(iv)  For every a both c - /   and c - Ja have cardinality at most \a\ A- p ,

moreover the sequences of the Ia 's and Ja 's are decreasing.

We shall have:

(v) the family S#a = { At n: n e Ia , « < co} is independent with respect to

9ß" n for every ß < p and « < co.

The family 38 is used to keep other filters from being ultrafilters: during our

construction we also construct (automatically) the ultrafilters £1{X„, x„ n) for

y < ß < p and « < co. At stage a the filters S"ß „ „ = { FÍA, y): A e 9ß n }

are approximations to these. We shall have:

(vi) If y < ß < p and « < co then the family 38n — { B   ¡: n e Jn , i < co}

is independent with respect to §"ß ., n .

Note that (vi) is much stronger than (ii).

Finally we show how to take care of (3.3): let {3¡n: a < c, a even} enu-

merate the collection of all partitions of co in such a way that each partition is

listed c times. We do the following:

(vii)  If a  is even and if 2¡¡y = {Dn: n < co}   is such that for every  «

co - Dn e 9" and for every y < p the set {/': Dn e 9f ¡} is infinite

then do as follows:

For y < p let Lv — {/: 3«Z5.; e 9"¡} ■ There are two possibilities:

(1) The family ¿$a is independent with respect to ((2?" 0 U {L }))

for every y. In this case we partition Dn into « + 1 infinite pieces

Dn 0 • • • Dn n and we make sure that for every f e'"co with /(«) < «

for all « the set Zf = co- \Jn<0)DnJ(n) is in 9"+x .

(2) There is a y such that 38n is not independent with respect to this

filter (or it is not a filter). In this case we will add co - \J{ A., ( : i e L,,}

to 9" , for the least such y .

If none of the above holds we do nothing.

To see why this works suppose that in the end F = {yn : n < co} ç K - {p}

is discrete. Find a partition 5$ = {Dn:n < co} of to such that for all «

Dn e yn  and co - Dn e p.   Next fix an (even) a such that 3 - 3Siy  and
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3¡ ç {M : r¡ < a, n odd} . Then the assumptions of (vii) were satisfied at

stage a (the sets {i: Dn e 9" t } are all infinite because Y ç f]-     X ).

If (1) holds define / by /(«) = the i for which Dn ¡ e yn. Then Z, e p

and co -Zfeyn for all « , so that p & Y .

If (2) holds then one can readily check that F ç {x., ¡: i e L,,} whereas p

is not in this closure.

5. The construction

As promised we begin by ensuring (iii) right away. We let

y°   =((FU{[JAI] r.n<p,AeF}))
J€A

and for ß < p and « < co

U{Aß n}u{Ati,]:neBn ],ß<r1<p}\\ .

We put Z0 = J0 — c - p . We only have to verify

(iii) If y < ß and i < co then Ayi e 9°,, but co-A„ , = \jj^iAyJ e9ß n

for all «.

(vi) Note that we used "levels" from sf when building the 9ß n .

(vii) One can readily check that

' 0, ify>ß

E(Aß,n>?) = \ i«}-   ify = ß

.Bß.n> ¿y<ß

and
co, if y > rj

E(\JAnJ>r)*  \ A' {iy = ^
lu,*«*,.,.   *y<n

so that

&!!.y,n = ({Fu{\jBnJ:AeF,y<ri<ß}
je a

U{BßJU{B   j-.neB  j,ß<ti<n)

It is now straightforward to check (vii).

In case a is a limit we simply let

^/:„ = IK«> 7„ = fU    and    J„=f)Js.
¡><n r>'<!
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We leave it to the reader to verify that &"A „ n = U«s<„ ̂« - „ and that (o)

through (vii) hold.

Suppose that a is odd. We have to add Mtt or co- Mn to each of the filters

9A n. We collect the filters to which Mn certainly cannot be added: let C be

the set of those pairs (ß , n) for which ({9ß* n U {Mn})) is not a filter or, if it

is, the family $fn is not independent with respect to it.

For each (/?, «) we choose tpß n e Fn(Z(, co) and Hß n e 9ß n such that

Hß n nM nA(tpß n) = 0, and we let Zi+1 = Ia-(J{dom<pß n: (ß, n) e C}.

Clearly \In - In+l\ < p so that |c - /n+,| <\aA-l\ + p.

It would be tempting to add Mit to 9?n if (ß, n) <£ C and co-Mit to the

other 9A n. Indeed, this would create no independence problems for j/ + 1 .

However we also have to deal with the filters &'ß „ n : if Mn is added to 9ß n

then E(Mti, y) should be well-behaved with respect to 38H+X and S?ß+ n.

For this we let C0 — C , and given C , we let C , be the union of C and

the set of those pairs (ß, n) for which 38   is not independent with respect to

i&p.y.n u Hk- (7. k) t c„}}>>. lf n is a'limit we let C, - Ui<); C{ .

We claim that Cw +1 = C(/J . For suppose that (ß, «) e Cw +1 — Cw and fix a

y < /? witnessing this. Take an n < cox such that (y, k) e Cw iff (y, k) e C .

We then find that (ß , n) e C   , ç Cw   anyway.

Put C = C(u and note that by the argument given above, (ß, n) e C iff

for every y < ß , 38n is independent with respect to ((§",/ ., n U {Z..,})), where

L., = {k:(y,k) d C).
Now we define

Kn = irß\n u {^ - K}))      U(ß,n)eC

and

^' = ((^:«U{M(J)) it(ß,n)iC

An important observation at this point is that   E(Mn, y)  =  L.,   and that

E(co - Mti, y) = co - L„ for every y .

We already defined Zi+1 . To define / , , choose for every (ß, n) eC, say

in C | - C , a y < ß witnessing this, together with t„ /; e Fn(Ja, a>) and

Gß.n^^ß,n suchthat E(Gíilf,7)n{*::(y,A:> ^ C,;} n'^ „) = 7>. Now

let J ,, = J
'rt+l Uidomr^ ,,:(/?,/i) eC-C}.

We must check (v) if (ß, ri) et C then, by the choice of C, the family sft

is independent with respect to 9?n , hence so is the smaller family s/n+x . We

now show by induction on n that if (ß, n) e C   then j/ + 1  is independent

with respect to 9ß'+n .

If n = 0 then Hß n n /4(p„ n) ç co - Mn and domcc^ n ç Z+| - Z(i, so by

2.4 ¿fll+x  is independent with respect to 9ß n  .
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Now assume (ß , n) e C +] - C and find y < ß , Gß n and rß n as above.

Then Gß nC\B(rp n) ç {k: (y, k) e Ct)} ç co - Ly = E(co-Mn, y). Now let

H e 9g"n . By assumption á?t is independent with respect to &'ß ., „, so that

E(H, y) C\Gß nr\B(xß „) ¿ 0. But then there is an i e co with i e E(H, y)

and (y, i) e C„. It follows that H e 9,'\ , co - M e 9"? and, since jj/ .

is independent with respect to 9"* , H n co - Ma n A(tp) ■£ 0 for every

C e Fn(/n+1 , co).

We verify (vi) in a similar way: if (/?,«)<£ C then for y < ß , SÇ+ n =

({3?¡¡7nU{E(Ma,y)})) = ((2?l7nxj{L7))).   Then 3Su  is independent'with

respect to &?+ n, hence so is 38n+, .

If (ß, n) e C0 then Hß n n A(tpß n) n Mn = 0. Hence for every y < ß and

ieE(Hß n, y) the family j/ is not independent with respect to ({9,"iö{M(i}))

either. Thus, E(Hß n,y) Ç to — L  = E(co - Mti, y) and, in fact, &ß+, n =

&R ., „ ; and we have (yi) m this case.

Finally assume that (ß , n) e C +x - C and consider y < ß , Gß n e 9ß n

and Xß n as above. We know that E(Gß n, y) fl B(xß n) ç {/: (y, í) g C} ç

co - L„ = E(co - Mn, y).

Now let H e 9ß n, ô < ß and x e Fn(7r+1, co). We must show that the

set E(H, S) n E(co - Mn , à) n 5(t) is nonempty.

Case 1. ¿ = y . In this case the set contains E(H, S)(\E(Gß n , 3) f)B(xß n)n

B(t) , which is nonempty, because ¿&a is independent with respect to S"ß n

and xöxß ne Fn(Z (, co).

Case2.  Ô < y . Fix i eE(H, y)C\E(Gß n, y)nB(tßn), then (y,i)eCn and

H e 9n¡. The family á?(+1 is independent with respect to 2C+ê . by our tacit

inductive assumption on n . Therefore our set is nonempty.

Case 3. ó > y. Clearly now (ô,l) e C +, ç C whenever Gß n e 9¿*¡.

Therefore E(Gßn,ö) Ç {l:co-Ma£ 9s"j1}, which means that $f*¡tñ =

•^ß.S.n-

Suppose now that a is even. Assume 3¡n = {Z) : / < co} satisfies the assump-

tions of (vii).

If ( 1 ) holds then we have to partition the sets ZF somehow. Pick one element

£ from / and let Z|+1 = / - {¿¡}. Note that, since Dn e 9,"'¡ for very many

{y, n) and all i, the intersection ZF n/L k is infinite for every i and k . We

define D, k=D,nAs k if k < i and Dhi = D,-{Jk<lD, k .

By (vii) we know what 9',+   should look like: we let

y"+1 = «y u { Zf: f e wco and V« f(n) < «}))

where Zf = co-[\i<0)DiJV).
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To define 9ß\ for ß < p we pick one Ç from Ja , let Ja+] = Ja - {C}

and we put

Again only (v) and (vi) need verification: we begin with (v).

If ß < p and « < co then s/i+x  is independent with respect to 9ß'+n   by

(2.4). This leaves 9n+{ : let H e 9" , let K be a finite set of functions, let

tp e Fn(7 . , co), and let y < p . By our assumptions on 3>a and 9" we can

assume that HnDn = 0 if n < \K\ + 1. Now by ( 1 ) we can take some i e L„

such that H e 9"¡, we may also take an « such that Dn e 9~a¡ ; it follows

that « > \K\ A- 1 , so that for some k < « we have Dn k ç flz-gx Zf. Because

j/ is independent with respect to 9,"¡ and ¿¡ c¿ Z+1 it now follows easily

that Hnf]feK Zf nA(tp) is nonempty.

Next we do (vi). Again if ß < p there is no problem. We simply note that

for y < ß  %"ß\] n = ((&ß\.,,n U {Br k})) for an appropriate k .

For 9"+l let H and K be as above, let x e Fn(/(+1, co), and let y < p.

Take a ß with y < ß < p . The argument given above provides us with m,

k and « such that Dm k ç Ç\feKZf and HC\Dm e9ß n. Now {/: Dm k e

9^} = {/: Dw E y',r and ^ , € y',71} = {/ e B-k: Dm e 9A} =
£(Dm, y) n Z?- Ä .  Using the independence of J?( with respect to S"ß „ n  it

now follows easily that {/: H n f]^A- ̂ r n 5(t) g y'7'} ¿ 0 •
The case when (2) holds is somewhat easier. We follow the strategy of the odd

step: let M = \J{A„ k: k € L }. One readily checks that—in the notation of

that step— L„ = {)k: (y, k) e C }, so that y" e C, and hence co-M e 9n+x .

This completes the construction.
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