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Abstract. The purpose of this paper is to introduce and investigate cardinal

functions called pseudonet weight, weak net weight, and weak pseudonet weight.

These are similar to but generally smaller than net weight. We look at how these

cardinal functions relate to hereditary Lindelöf degree, hereditary density, and

spread, and we study their behavior under products.

An important and useful cardinal function for a topological space is that of

weight, namely, the minimum cardinal for a base of open sets. Net weight is

similar to weight, except that "base" members need not be open. In this paper

we look at three cardinal functions which are slight variations of net weight.

Throughout this paper, k denotes an infinite cardinal number, and for sim-

plicity, all cardinal functions will be infinite. The smallest (infinite) cardinal

number k such that X is hereditarily /c-Lindelöf (hereditarily «r-separable,

resp.) is denoted by hl(X) ihdiX), resp.). The spread of X (equivalently,

hereditary Souslin number) is denoted by siX). As usual, wiX) denotes the

weight of X. The set of all real numbers is denoted by R . For notation and

terminology not defined here, see [1].

In § 1 we generalize the notion of nets (also called networks) by introducing

«r-pseudonets. Some examples are given of (nonregular) Hausdorff spaces which

have K-pseudonets but have no nets of cardinality < k . Theorem 1.9 shows that

pseudonet weight coincides with net weight in regular spaces. We also examine

weak net weight and weak pseudonet weight. In terms of definition, weak net

weight is to net weight as weak pseudonet weight is to pseudonet weight.

The main theorem in §2 is Theorem 2.3, which shows that the Cartesian

product X x Y of a hereditarily K-Lindelof space X and a space F having a

k-pseudonet is hereditarily «r-Lindelof.

1. Definitions, examples, and elementary relationships

1.1.    Definition (cf.   [1, Remark 3.1.17, p.   170]). A family f of subsets of

a topological space X is called a net in X if and only if for each open set
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U c X and x e U, there exists E e ïï such that x e E and E c U. It will

be convenient to say that a family IP of subsets of a topological space X is a

K-«e? in X if and only if |á?| < k and J? is a net. The cardinal number

«iü(A') = min{/c > ûj: there exists a K-net in X}

is called the net weight of X .

1.2. Definition. A family 8? of subsets of a topological space X will be called

a K-pseudonet in X if and only if |IP| < k and for each open set U e X and

x e U, there exists E e %> such that x e E and |£\t/| < k . The cardinal

number

pniX) = min{/c > co: there exists a k -pseudonet in X}

will be called the pseudonet weight of X.

1.3. Definition. A family f of subsets of a space X will be called a wéœk

K-«e/ in X if and only if |IP| < k ; and for each open set U c X, there exists

a set A c £/ such that \A\ < k ; and for each x G t/\y4, there exists E e I?

such that x e E c U . The cardinal number

wnw(X) = min{/c > a>: there exists a weak k -net in X}

will be called the weak net weight of X .

1.4. Definition. A family IP of subsets of a space X will be called a weak

K-pseudonet in A" if and only if |IP| < k ; and for each open set U c X , there

exists a set A e U such that |/1| < k ; and for each x e í/\j4, there exists

E e IP such that x e E and \E\U\ < k . The cardinal number

wpn(X) = min{/c > co: there exists a weak k -pseudonet in X}

will be called the weak pseudonet weight of X .

So to speak, a family W is a net if for each open set, each point of that open

set lies in a member of W which is contained in the open set. f is a pseudonet

if for each open set, each point of that open set lies in a member of W which is

almost contained in the open set. i? is a weak net if for each open set, almost

each point of that open set lies in a member of I? which is contained in the

open set. Finally, fê is a weak pseudonet if for each open set, almost each

point of that open set lies in a member of IP which is almost contained in the

open set. In all this discussion, "almost" means that the exceptional set has

cardinality at most k .

Of course, every K-net is both a K-pseudonet and a weak /c-net. Hence, we

have pn(X) < nwiX) and wnwiX) < nwiX). Similarly, every K-pseudonet

and every weak K-net is a weak K-pseudonet, so that wpniX) < pniX) and

wpniX) < wnwiX). In general, no other inequalities hold between these four

cardinal functions. Having net weight < k , pseudonet weight < k , weak net

weight < k , or weak pseudonet weight < k are hereditary properties. More

precisely, if F is a subset of X and IP is a K-net (K-pseudonet, weak K-net,

weak K-pseudonet, resp.) in X , then so is {En F: E e I?} in the subspace F .
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1.5. Theorem. For every space X, the inequality hl(X) < pn(X) holds.

Proof. It is easy to prove this statement directly, but it is worth observing that

this theorem follows as an immediate corollary of Theorem 2.3.

1.6. Theorem. For every space X, the inequality hd(X) < wnw{X) holds.

Proof. Since wnw(X) is hereditary, it suffices to prove that d(X) < wnxiX).

Suppose that IP is a weak K-net in X. Let A be a subset of X formed

by choosing one point from each nonempty E n X such that E e W. Then

\A\<K.

We show that \X\A\ < k . Assuming otherwise that \X\A\ > k , we obtain

that there exist x e X\A and E e & such that x e E and E c X\A. Then

EnX ^ 0 so that AnE ^ 0 by the choice of A . But this is impossible since

A~C\E = 0. Hence, \X\A~\ < k and \A\J(X\Ä)\ < k also. As Au(X\A) is
dense in X, we have that d(X) < k .

1.7. Theorem. For every space X, the inequality siX) <wpniX) holds.

Proof. Let wpniX) = k and suppose that s(X) > k. Then there exists a

discrete subspace F of X suchthat \Y\ >k. Of course, F can be partitioned

into a family of subsets {Us:s e S} such that each £/. has cardinality greater

than k and such that |5| > k . Necessarily, each Í7. is open in F. Because

weak pseudonet weight is a hereditary property, we may suppose that {Et:t e T}

is a weak pseudonet for X such that \T\ — k. If s e S and / e T, let us say

that Et helps Us if and only if \Usr\Et\ > k and \Et\Us\ < k. Evidently, no

E! can help more than one Us. On the other hand, for each s e S, there must

exist t e T such that E  helps U . Hence, |F| > |5| > k , which is impossible.

Theorem 1.7 has some immediate consequences. For example, if X is a

regular space, then by a theorem of Sapirovskii, nwiX) < 2wpn{ [4, Theorem

5.3, p. 23]. The Sorgenfrey line ([1, Example 1.2.2, p. 39]) shows that this

inequality cannot be sharpened. By another theorem of Sapirovskii, every space

X has a dense subspace F with «/(F) < s(X), so that «/(F) < wpniX) [A,

Proposition 5.6, p. 24]. Since s(X) = hl(X) for hereditarily paracompact

spaces, we have hl(X) < wpn{X) if X is such a space.

1.8. Theorem. For every space X, the inequality hdiX) < wpn(X)+ holds,

where wpniX)+ denotes the smallest cardinal greater than wpniX).

Proof. Let k = wpn(X), let & be a weak K-pseudonet in X , and let F c X .

Denote %" = {E e % : \E n Y\ > k} . Suppose F* / 0. To each E e <T*

assign a set Ar c E n F such that \AF\ — k+ . Put

A = \J{E DY:Ee %\%*} U \J{AF: E e %\%*}.

We show that \Y\A\ < k . Assuming otherwise, there exists E e & such that

En(Y\A~) + 0 and \Ex~YÄ\ < K. Obviously, £ef ; otherwise E n F c A .

Since \AF\ = k+ , we have AF\A / 0, which is impossible.
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To prove the next two theorems, we need the following definition. A point

x of a space X will be called a K-condensation point of a set E c X if and

only if for every open neighborhood U of x , the inequality \UC\E\ > k holds.

Denote by E     the set of all K-condensation points of E.

Let us observe that if E is a subset of a hereditarily K-Lindelöf space, then

the set E\E{K) can be covered by a family ÍA of open sets such that \1!/\ < k

and \U n E\ < k for each U e % ; hence \E\E(K)\ < k .

1.9. Theorem. If X is a regular («oí necessarily Tx) space, then pniX) —

nw(X).

Proof. It suffices to show that nw(X) < pniX). Put k = pn{X) and let S be

a K-pseudonet in X. Because X is hereditarily K-Lindelöf, the family

jr = {E(K]: E e %} U {{x}: x g E\E(k)   for some EeS}

is of cardinality < k . If U is an open subset of X and x e U, then we can

choose an open set V such that x e V and V c U, and we can choose E e I?

such that x e £ and |£\F| < k . As |(X\F) n £| < k , then E{K) cV, which

implies that yF is a net in X . Hence, nw(X) < k .

1.10. Theorem. Suppose that a space X is regular («oí necessarily Tx) and

hereditarily K-Lindelöf If X has a weak K-pseudonet, then X has a weak

K-net consisting of closed sets. Hence, if X is regular, then

wnwiX) < max{wpniX), hl(X)}.

Proof. Let F be a weak K-pseudonet in X. Denote

jT = {E(K):E e g} U {{x}: x e E\EiK)    for some EeS).

Because hl(X) < k , then \AA\ < k . It is obvious that all members of JV are

closed. We shall show that Jf is a weak K-net.

Suppose that U is an open set in X. There exists a collection {Us:s e S}

of open subsets of X such that |5| < k and U = [j{Us:s e S} = [j{Us:s e

S}. For each s e S, there exists a set As c [/. such that \As\ < k and if

x e Us\As, then there exists E e 'S such that x e E and \E\US\ < k . The

set A = \J{As:s e S} is of cardinality < k . If x G U\A , then x G US\AS for

some s e S. Hence, there exists E e IP such that ie£ and |£\£/J < k .

If x G E\E(K), then {x} G ̂ F and {x} c TIs c Í7. On the other hand, if

x G E[K), then the proof of Theorem 1.9 shows that E(K) cVsc U.

1.11. Theorem. If X is regular («oí necessarily Tx), then the inequality

hdiX) < wpniX) holds.

Proof. By the remarks following Theorem 1.7, X contains a dense subset Y

such that hliY) < wpniX). Then by Theorem 1.10, wnw(Y) < wpniX), so

that hd(Y) < wpniX) by Theorem 1.6. Since F is dense in X , it follows that

d(X) < wpniX), so that hd(X) < wpniX).
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By combining Theorems 1.10 and 1.11, we notice that wpniX) = wnwiX) if

X is a regular space for which hl(X) < hdiX). Moreover, if X is a metrizable

space, then hdiX) = w(X) so that wpniX) = w(X) in that case.

1.12. Theorem. If a space Y is a continuous image of a space X, then

pniY) < pniX), wnwiY) < wnwiX), and wpniY) < wpniX).

Proof. Suppose that tp:X —► F is a continuous surjection. If If is a k-

pseudonet [resp., weak K-net, weak K-pseudonet] in X , then the family {4>(E):

E e &} is a K-pseudonet [resp., weak K-net, weak K-pseudonet] in F. We

show, for example, that {cp(E):E e IP} is a weak K-pseudonet in F if If

is a weak K-pseudonet in X. Suppose U is an open set in F. Then there

exists a set Ac <f>~ (U) such that for each x e tj>~ (U)\A , there exists E e If

such that x e E and \E\tb~ (U)\ < k . Of course, \<f>(A)\ < k . Now suppose

y e U\cp(A). Then there exists x e cf~ (U)\A such that çb(x) = y. Choose

E e S such that x e E and such that \E\cb~l(U)\ < k . Then y e tb(E) and

<f)(E)\U c (f)[E\<p~l(U)], so that \tp(E)\U\ < k . The proofs of the remaining

two statements are entirely similar.

Now, let us look at some examples of Hausdorff spaces for which the

pseudonet weight is different from the net weight. It will follow from Theo-

rem 1.9 that neither of these spaces is regular.

1.13. Example. ([wpw(X0) = pn(X0) = co and wx = wnw(X0) = nw(X0)]).

(cf. [7, Example 2, p. 179].) Let X0 = [0, cox) and let 4>:X0 —► R be a one-to-

one function. Consider the topology on X0 generated by the base consisting of

all sets of the form tp~ (U) n [a, cox ) where a e X0 and U is open in R with

the usual topology. Then X0 is Hausdorff and nonseparable, so nw(X0) — cox .

If 38 is a countable base for the usual topology on R, then the family If =

{</>" (B):B eAA8} is an copseudonet in XQ.

1.14. Example. ([wpw(Xx) = pn(Xx) = co and co < wnw(X) < nw(X)]).

Let Xx= R be considered with the topology consisting of all sets of the form

U\A , where U is an open set in R~ with the usual topology and A is a count-

able subset of X2 = R x {0}. Then every countable base for the usual topology

on R is an copseudonet in X, . Because X-, is a nonseparable subspace of

Xx (cf. [1, Problem 2.7.9(f), p. 155]), then nw(Xx) > co. Obviously, the space

Xx  is separable and Hausdorff.

Examples 1.13 and 1.14 show that hd(X) can be greater than pn(X) and

hence greater than wpn(X). Thus the inequality of Theorem 1.8 cannot be

improved upon. These examples also point out that the assumption of regularity

cannot be omitted in Theorems 1.10 and 1.11.

Let us look at an example similar to Example 1.13 for which weak net weight

differs from net weight and from pseudonet weight.

1.15. Example. ([wpw(Xl) = wnw(Xi) = co and cox — pn(X}) = nw(X-})]).

(Cf. [3, Theorem 2, p. 118] or [7, Example 1, p. 179]). Denote X. = [0,'cox)
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and let <p:X^ —► R be a one-to-one function. Take a countable base 38 for

the usual topology on R and consider the topology on X3 generated by the

base consisting of all sets of the form (p~l(U) n [0, a), where U G 38 and

a < cox . Then X} is a Hausdorff space which is not Lindelöf. Hence, X3

does not have an co-net or an co-pseudonet. We shall show that the family

g" = {tf\U):JJ e38} is a weak «-net in X3.

Suppose that V is an open set in X3. Then V = \}{t$T (Us) n [0, as):s e

S} , where Us G 38 and a5 < cox for each seS. Let Ux, U2, ... be an

enumeration of the members of 38 . For each positive integer « , denote Sn =

{s eS:Us = UJ . If Sn # 0, then let a„ = sup{as:s eSn}. Then [0, an) =

IJ{[0,q5):5 G S„}. Also V = \J{<p-l(Un)n[0,an):Sn + 0}, and the set
A = LK[0> an)'-an < w|} ^S countable. Of course, if x G V\A, then x G

0~ (Un) c F for some positive integer « .

It follows from Theorem 44.H of [2, p. 220] and our Theorem 1.6 that—

under the assumption of [MAa-^CH]—every compact Hausdorff space having

a weak co-net is hereditarily Lindelöf. On the other hand, Example 1.16 shows

that under CH, a compact Hausdorff space can have a weak co-net without

being hereditarily Lindelöf.

1.16. Example. ([wpn(X4) = wnw(X4) — co and cox - pniX4) - nw(X4)]).

Using the Continuum Hypothesis, I. Juhász, K. Kunen, and M. E. Rudin con-

structed in [5, §1] a locally compact, locally countable topology 9 on R, finer

than the usual topology and such that if U € 9~, then there exists a subset G

of U such that G is open in the usual topology and \U\G\ < co. If X4 is this

space, then X4 is not hereditarily Lindelöf but any countable base If for the

usual topology on R is a weak co-net in X4. Indeed, for each open subset ¡J of

X4 , choose G c U such that G is open in the usual topology and \U\G\ < co ;

if x G G c U, then there exists E e S such that x G E c G c U.

1.17. Example. ([wpn(X5) = co and co, = pn(X5) — nw(X5)]). Using the

combinatorial principle ♦, A. J. Ostaszewski constructed in [6, p. 506] a locally

countable, locally compact Hausdorff topology on X5 = [0, cox) such that each

open set in X5 is countable or cocountable. Because each uncountable closed

subset of X5 contains some interval [a, cox), where a < cox , it follows that

X5 has no weak co-nets consisting of closed sets. However, it is easily seen that

the family If = {X} is a weak co-pseudonet in X5. Hence, the assumption

of the hereditary K-Lindelöf property is needed in Theorem 1.10. We do not

know the value for wnu>iX5).

2. Applications to products

Unlike net weight, the cardinal functions pseudonet weight, weak net weight,

and weak pseudonet weight are not preserved under finite products.
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2.1. Theorem. If spaces X and Y are such that \Y\ > k and wpniX x F) <

k , then nw{X) < k . Hence, if \Y\ > k and pniX x Y) < k or if \Y\ > k and

wnwiX x Y) < k , then nw{X) < k .

Proof. Let If be a weak K-pseudonet in X x Y. For each E e If, denote

N(E) = {x G X: \E(x)\ > k} , where E(x) = {y e Y: (x, y) e E}. We show

that the family {NiE):E G If } is a net in X .

Let U be an open set in X and x0e U . There exists a subfamily If* of If

and a subset F0 of F with \Y0\ < k such that {x0} x iY\Y0) c (j{E:E e %*}

and \E\{U x Y)\ < k for each E e If *. Because \Y\ > k and hence |F\F0| >

k , there exists E0 e If* such that |Zi0(x0)| > k , so x0 G NiE0). If x ^ U,

then by virtue of the inequality |£'0\((7 x Y)\ < k , we have that |Z?0(x)| < k ;

thus x i N(E0) and N(E0) C t/.

2.2. Corollary. For every space X, we have the equality:

wpn(X x X) — nw(X).

Hence wnw(X x X) = nw(X) and pn(X x X) = nw(X).

Proof. By virtue of Theorem 2.1 and the fact that nw(X) < max{co, |X|}, we

have wpn(X x X) > nw(X). The reverse inequality follows from the fact that

nw(X x X) = nw(X).

Recall that hereditarily Lindelöf degree is not preserved under finite products

(cf. [1, Examples 3.8.14 and 3.8.15, pp. 248—249]); neither is pseudonet weight

(Theorem 2.1). However, we have the following:

2.3. Theorem. If X and Y are topological spaces such that hl(X) < k and

pn(Y) < k , then hl{X x Y) < k .

Proof. Suppose that {UsxVs:s e S} is a collection of open rectangles in XxY .

Put W = \J{UsxVs:s G 5}, and let the family {Et: t e T}, where |F|<K,bea

K-pseudonet in F . For each t e T, denote St = {s e S: \Et\Vs\ < k} . Because

hl(X) < k , there exists a set S* c 5, such that \S*\ < k and [J{^:s e s,} =

\J{Us:seS;}.
Let G( = f){Vs:s e 5*}. Then, by the definition of S*, the set £,\G, =

\J{E,\Vs:s e 5,*} has cardinality < k; thus the set H = \J{E¡\G,:t e T} is
of cardinality < k . Using the assumption that hl(X) < k , we obtain that, for

each y e H, there exists a set S*(y) c{îê S:y e F} such that |5*(y)| < k

and

\J{U(.se S and y e V} = \J{Us:s e 5*(y)}.

Let S* = \J{S,:t G T} u \J{S*(y):y G H}. Clearly, |5*| < k. We shall show

that W = \J{US x V:seS*}.

Suppose that (x, y) e W . Then (x, y) e Us x F for some s e S. Hence,

there exists t e T such that y e E/ and such that |Z£(\Fj| < k . Because s e St,

there exists sx e S* such that x g Us . If y e Gt, then (x, y) e UH x F . On

the other hand, if y £ Gt (in which case y e H), then there exists s2 e S*iy)
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such that x e Us , so that (x, y) e Us xVs . In either case, there exists s e S*

such that (x, y) € Us x Vs. Hence, X x Y is hereditarily K-Lindelöf.

2.4. Corollary. If spaces X and Y are such that «/(X) < k and «ifj(F) < k,

then hliX x Y) < k .

2.5. Corollary. Suppose that {X^.s e S} is a collection of topological spaces

such that

\S\<K,

hliXs ) < k   for some s0e S,

and

pniXs)<K   for all s e S\{s0}.

Then the Cartesian product T\{Xs:s e S} is hereditarily K-Lindelöf

Proof. Using Theorem 1.5 and Corollary 1.9, we can inductively prove that

if S*  is a finite subset of S, then the space ni-^v5 e $*}  IS hereditarily

K-Lindelöf. From Theorem 3 of [7] we immediately obtain the proposition.

2.6. Remarks. Applying a lemma of Juhász (cf. [7, Lemma 2, p. 176]), P.

Zenor proved in [7, pp. 179-180] that the space X0 considered earlier in Ex-

ample 1.13 is such that X^ is hereditarily Lindelöf. Let us observe that this

property of X0 is an immediate consequence of the preceding corollary. In like

manner, the subspace X2 in Example 1.14 also is Hausdorff, nonseparable, and

such that X'2° is hereditarily Lindelöf.
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