COPIES OF l_{∞} **IN** $L^{p}(\mu; X)$

JOSÉ MENDOZA

(Communicated by William J. Davis)

Dedicated to Professor B. Rodriguez-Salinas

ABSTRACT. Let X be a Banach space and let (Ω, Σ, μ) be a measure space. For $1 \le p < +\infty$ we denote by $L^p(\mu; X)$ the Banach space of all X-valued Bochner p-integrable functions on Ω . In this note we show that $L^p(\mu; X)$ contains an isomorphic copy of l_∞ if and only if X does.

Let X be a Banach space and let (Ω, Σ, μ) be a measure space. For $1 \le p < +\infty$ we denote by $L^p(\mu; X)$ the Banach space of all X-valued Bochner p-integrable functions on Ω . The aim of this note is to prove the following:

Theorem. Let $1 \le p < +\infty$, then $L^p(\mu; X)$ contains an isomorphic copy of l_∞ if and only if X does.

This result completes in some way the results given in [5] and [7] where conditions for $L^p(\mu; X)$ to contain l_1 or c_o are given. Our proof is strongly inspired by [2], where several ideas from [4] are used. In fact, the three lemmas we need in our proof may be found in [2] (although only the last one appears there for the first time.)

If A is a set, we denote by [A] the set of infinite subsets of A. Let $\mathbb N$ be the set of natural numbers; for $M \in [\mathbb N]$, $l_\infty(M)$ is defined to be the subspace of l_∞ of all sequences $(\zeta_n) \in l_\infty$ with $\zeta_k = 0$ for $k \notin M$. We denote by $\{e_n\}$ the unit vector sequence of l_∞ .

Lemma 1 (Proposition 1.2 and Remark 1 of [8]). If $T: l_{\infty} \to X$ is an operator such that $T(e_n)_{\infty} \nrightarrow 0$, then there is $M \in [\mathbb{N}]$ such that $T|_{l_{\infty}(M)}$ is an isomorphism.

Lemma 2 (Corollary 1.4 of [8]). If X contains no copy of l_{∞} , then every operator $T: l_{\infty} \to X$ is weakly compact.

Lemma 3 ([2]). Let $\{T_k\}$ be a sequence of weakly compact operators from l_{∞} into X; then there exists $M \in [\mathbb{N}]$ such that $T_k((\zeta_n)) = \sum_{n=1}^{\infty} \zeta_n T_k(e_n)$ for all $(\zeta_n) \in l_{\infty}(M)$ and all $k \in \mathbb{N}$.

Received by the editors April 28, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 46E40; Secondary 46B20. Supported in part by CAICYT grant 0338/84.

Proof of the theorem. The *if* part of the result is of course trivial. For the converse we shall prove first the following:

- (*) If $L^p(\mu; X)$ contains a copy of l_∞ , then there is a σ -finite measure space $(\Omega_1, \Sigma_1, \mu_1)$ such that
 - (i) Σ_1 is generated by a sequence of measurable sets of finite measure (and therefore, $L^p(\mu_1)$ is separable),
 - (ii) $L^{p}(\mu_{1}; X)$ contains a copy of l_{∞} .

Let us suppose that $L^p(\mu; X)$ contains a copy of l_{∞} and let J be an isomorphic embedding from l_{∞} into $L^p(\mu; X)$. By III.8.5. of [3] we know that there is a σ -finite measure space $(\Omega_1, \Sigma_1, \mu_1)$, such that

- (a) $\Omega_1 \in \Sigma$, $\Sigma_1 \subset \Sigma(\Omega_1) = \{A \in \Sigma \colon A \subset \Omega_1\}$, and $\mu_1 = \mu|_{\Sigma_1}$,
- (b) $\{J(e_n)\}\subset L^p(\mu_1; X)$, and
- (c) Σ_1 is generated by a sequence of measurable sets of finite measure (and therefore, $L^p(\mu_1)$ is separable).

Let R be the restriction operator from $L^p(\mu;X) = L^p(\Omega,\Sigma,\mu,X)$ into $L^p(\Omega_1,\Sigma(\Omega_1),\mu|_{\Sigma(\Omega_1)};X)$ and let E be the conditional expectation operator from $L^p(\Omega_1,\Sigma(\Omega_1),\mu|_{\Sigma(\Omega_1)};X)$ into $L^p(\mu_1;X) = L^p(\Omega_1,\Sigma_1,\mu_1;X)$ (see f.i. V.1. of [1]). If we take $J_o = E \circ R \circ J$ it is clear that

$$||J_o(e_n)||_p = ||J(e_n)||_p \nrightarrow 0.$$

Then, by Lemma 1, $L^p(\mu_1; X)$ contains a copy of l_{∞} . This proves (*).

Let us suppose now that $L^p(\mu; X)$ contains a copy of l_∞ and that X does not. We can assume, by (*), that μ is a σ -finite measure on a σ -field Σ generated by a sequence $\{A_k\}$ of sets of finite measure.

Let J be an isomorphic embedding from l_{∞} into $L^{p}(\mu; X)$, and let us define for each $k \in \mathbb{N}$

$$J_k \colon l_{\infty} \to X$$
$$(\zeta_n) \to \int_{A_k} J((\zeta_n)) \, d\mu$$

By Lemma 2, $\{J_k\}$ is a sequence of weakly compact operators, and, by Lemma 3, there is $M \in [\mathbb{N}]$, such that

$$J_{k}\left(\left(\zeta_{n}\right)\right) = \sum_{n=1}^{\infty} \zeta_{n} J_{k}(e_{n}) \text{ for all } \left(\zeta_{n}\right) \in l_{\infty}\left(M\right) \text{ and all } k \in \mathbb{N}.$$

Let $J_o = J|_{I_\infty(M)}$, and let X_o be a separable subspace of X, such that

$$J\left(e_{n}\right)\left(t\right)\in X_{0}$$
 μ -almost everywhere, for every $n\in M$.

Let $(\zeta_n) \in l_{\infty}(M)$, and let $k \in \mathbb{N}$; we have

$$\int_{A_k} J_o\left(\left(\zeta_n\right)\right) d\mu = \int_{A_k} J\left(\left(\zeta_n\right)\right) d\mu = J_k\left(\left(\zeta_n\right)\right)$$

$$= \sum_{n=1}^{\infty} \zeta_n J_k\left(e_n\right)$$

$$= \sum_{n=1}^{\infty} \zeta_n \int_{A_k} J\left(e_n\right) d\mu.$$

Therefore,

$$\int_{A_{i}} J_{o}\left(\left(\zeta_{n}\right)\right) d\mu \in X_{o}, \quad \text{for all } k \in \mathbb{N}.$$

Since Σ is generated by $\{A_k\}$, standard arguments allow us to conclude that

$$\int_{A} J_{o}\left(\left(\zeta_{n}\right)\right) d\mu \in X_{o}, \quad \text{if } A \in \Sigma \text{ and } \mu\left(A\right) < +\infty.$$

Then we have (see f.i. X, §5, Theorem 5 of [6])

$$J_{\alpha}((\zeta_n))(t) \in X_{\alpha}$$
 μ -almost everywhere,

and so,

$$J_o\left(\left(\zeta_n\right)\right) \in L^p(\mu; X_o), \quad \text{for every } \left(\zeta_n\right) \in l_\infty(M).$$

But this implies that J_o is an isomorphic embedding of $l_\infty(M) \approx l_\infty$ into the separable space $L^p(\mu\,;\,X_o)$. This contradiction finishes the proof.

REFERENCES

- 1. J. Diestel and J. J. Uhl, Jr., *Vector measures*, Math. Surveys No. 15, Amer. Math. Soc., Providence, RI, 1977.
- 2. L. Drewnowski, Copies of l_{∞} in the operator space $K_w * (X^*, Y)$, (to appear).
- 3. N. Dunford and J. T. Schwartz, Linear operators, vol. I. New York, Interscience, 1955.
- 4. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- 5. S. Kwapien, Sur les espaces de Banach contenant c_0 , Studia Math. 52 (1974), 187-188.
- 6. S. Lang, Analysis II, Addison-Wesley, Reading, MA, 1969.
- G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l₁, C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-749.
- 8. H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-16.

Departamento de Análisis Matemático, Universidad Complutense de Madrid, 28040 Madrid (España)