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COPIES OF lx IN Lp(p;X)
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Dedicated to Professor B. Rodriguez-Salinas

Abstract. Let X be a Banach space and let (SI, I., p.) be a measure space.

For 1 < p < +oo we denote by Lp(p; X) the Banach space of all A"-valued

Bochner /^-integrable functions on SI. In this note we show that Lp(p; X)

contains an isomorphic copy of l^  if and only if X does.

Let X be a Banach space and let (Í2, S, p) be a measure space. For 1 <

p < -r-oc we denote by LPip; X) the Banach space of all X-valued Bochner

/^-integrable functions on Q. The aim of this note is to prove the following:

Theorem. Let 1 < p < +00, then Ü' (p ; X) contains an isomorphic copy of l^

if and only if X does.

This result completes in some way the results given in [5] and [7] where

conditions for LPip;X) to contain lx or co are given. Our proof is strongly

inspired by [2], where several ideas from [4] are used. In fact, the three lemmas

we need in our proof may be found in [2] (although only the last one appears

there for the first time.)

If A is a set, we denote by [A] the set of infinite subsets of A . Let N be

the set of natural numbers; for M e [N], l^iM) is defined to be the subspace

of /^ of all sequences (Ç„) e I with Çk =0 for k $ M. We denote by {en}

the unit vector sequence of /^ .

Lemma 1 (Proposition 1.2 and Remark 1 of [8]). If T: l^ —> X is an oper-

ator such that Z^Ooo ~** ®> t^ien mere is M £ [N] such that T\¡ {M) is an

isomorphism.

Lemma 2 (Corollary 1.4 of [8]). If X contains no copy of l^ , then every operator

T: l^ —► X is weakly compact.

Lemma 3 ([2]). Let {Tk} be a sequence of weakly compact operators from l^

into X ;  then there exists M e [N] such that TkHCn)) = YlT=\ ^n^k(en) for a^

(Ue/oo(^)   andaU  ^EN-
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Proof of the theorem. The if part of the result is of course trivial. For the

converse we shall prove first the following:

(*)   If Lp{p; X) contains a copy of /^ , then there is a cr-finite measure

space (Q,, X,, px) such that

(i)     X, is generated by a sequence of measurable sets of

finite measure (and therefore, Lp(p{) is separable),

and

(ii)   Lp(px; X) contains a copy of /^ .

Let us suppose that Lp(p ; X) contains a copy of / and let J be an isomor-

phic embedding from /^ into Lp(p ; X). By III.8.5. of [3] we know that there

is a cr-finite measure space (O, ,Zx,px), such that

(a) Qx el, I, C 1(0,) = {A e X: A c O,} , and px = /<|x ,

(b) {J(en)}cLp(px;X),and

(c) X, is generated by a sequence of measurable sets of finite measure (and

therefore, Lp(px) is separable).

Let R be the restriction operator from Lp(p;X) = Lp(Çl, X, p, X) into

Lp(0, , X(Oj), /¿|I(r2 )', ^) and let E be the conditional expectation operator

from Lp(Clx,I.(Qx)',p\nn);X) into Lp(/z, ; X) = Lp(0, , X, , /¿, ; X) (seef.i.

V.l. of [1]). If we take Jo = EoRoJ it is clear that

k(Oll,-||^.)||#*0.

Then, by Lemma 1, Lp(px ; X) contains a copy of /   . This proves (*).

Let us suppose now that LPip; X) contains a copy of /œ and that X does

not. We can assume, by (*), that p is a tr-finite measure on a cr-field X

generated by a sequence {Ak} of sets of finite measure.

Let / be an isomorphic embedding from / into LPip;X), and let us

define for each k e N

k OO

(£„)- Í J((Cn))dp
JA,

By Lemma 2, {Jk} is a sequence of weakly compact operators, and, by Lemma

3, there is M e [N], such that

oo

^(O-ËMiOfarall ((Je'.W andall^eN.

Let Jo = J\¡ {M), and let X0 be a separable subspace of X, such that

J (en) (t) e Xo       //-almost everywhere, for every n e M.
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Let (C„) e l^iM), and let fceN;we have

/ J0(iO)dp= [ J((Q)dp = Jk((Q)
JAk JAk

oo

= EW(0
n=l

oo

Therefore,

L

-Ew yw*-

■U(U)<^e;ro,     foralUeN.

Since X is generated by {Ak} , standard arguments allow us to conclude that

/;
J0((Cn))dpeX0,      ifAelandpiA)<+œ.

'A

Then we have (see f.i. X, §5, Theorem 5 of [6])

J0 ((C„)) (t) e X0       //-almost everywhere,

and so,

J0 (O e L"^ ; Xo).      for every {Q e lx (M) .

But this implies that J0 is an isomorphic embedding of l^iM) ^ l^ into the

separable space LPip; Xo). This contradiction finishes the proof.
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