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Abstract. The Chen-Milnor presentation can be used to determine the Lie

Algebra associated to the lower central series of the fundamental group of a

link in the 3-sphere S in many interesting cases. We use this fact to obtain

new and simpler proofs of unpublished results of Maeda on a conjecture of

Murasugi in the sharpened form of Massey and Traldi.

Statement of results

3 3
Let L be a link in S with m components and let G = nx(S - L) be the

group of the link. Let F — F (m) be the free group on xx, ... ,xm and let Fn

denote the «th term of the lower central series of F. By a result of Milnor

[9, Theorem 4] there are, for each integer q > 1 , elements w\   , ... , w£ € F

suchthat Wf'sw¡    modulo Fq+X and such that G/Gq+X has the presenta-

tion

(xx,...,xm:[xx,w\q)] = ---[xm,w{q)]=l,  Fq+X = l)

where [x, y] = x~ y~ xy. Moreover, for any q > 1 , any one of the relators

r,    = [xt, Wj] is redundant. Let R     be the normal subgroup of F generated

bv r(q) r(q)vy   rx     , ... , rm   .

Let £ = ¿(F) — ©„>! ^(T7) be the Lie algebra associated to the lower

central series of F. If ¿f( is the image of x¡ in £, then £ is the free Lie

algebra over Z on £,,..., £m . Let g = Z(G) be the Lie algebra associ-

ated to the lower central series of G. If g{q) = t(F/R(q) Fq+X) then cj(?) =

®i<,<,8/ = -C(ö/öi+1)- Since 0("+1) = 9(,)e£(+1(F//?,,+1)F?+2), we see

that 0 = 0(>,£?(F/A(,)Fi+l). Hence g = £/5H where SR = ©,>,«, with

SHfl = ¥Jer(Zq(F) -* Zq(F/R(q)Fq+X)). The ideal m is in general very difficult

to determine. However, generators for it can be given if the relators rf   satisfy

a certain independence condition, which we now describe.
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Without loss of generality we may assume that rq j= 1 for 1 < i < s and

q sufficiently large while r¡ = 1 for i > s, q > 1 . Then, for 1 < i < s there

are integers ¿7;, ¿7. such that for q > ¿¡r; we have rq € Fd  but  ^ Frf+1. For

q > q¡ the image of rf in Zd is independent of q and is denoted by p¡.

Also one can assume that ps is a linear combination of px, ... , psX , cf. [10,

p. 295]. Let r be the ideal of £ generated by px, ... , ps_x . We have r ç £K

but this inclusion is in general proper. If U = U(Z/x) is the enveloping algebra

of £/r then r/[r, r] is a [/-module via the adjoint representation of £/r. In

[7] we show that SH = r if the following condition holds:

(I) £/r is a free Z-module and r/[r, r]  is a free U-module on the images of

px,...,ps_x.

Following [2] and [5], we call a sequence px, ... , ps_x of elements of £

inert if condition (I) holds. For examples where this condition applies cf. [2],

[4]. Anick [2] has shown that (I) holds if and only if, for n > 1, the «th

homogeneous component of £/r is a free Z-module of rank an, where an is

given by (A):

(A) l\(l - t")a" = 1 - mt + £ td>.
n>l l<j<s

If (I) holds then the inverse of the above power series is the Poincaré series

of the graded algebra gr(Z[G]) — 0„>o7"/7"+ , where 7 is the augmentation

ideal of the group ring Z[G]. This follows from the fact that, in this case,

gr(Z[G]) is the enveloping algebra of £(C7), cf. [7].

Theorem 1. The following are equivalent:

(1) Property (I);

(2) For n > 1, £„(C7) is a free Z-module of rank an given by (A).

Now let L be a tame link in 5 with components Kx, ... , Km and let G

be the group of the link. The linking diagram of L is the edge-weighted graph

T whose vertices are the components of L, with two vertices AT( and K- being

joined by an edge of weight l¡j = the linking number of K¡ with Kj. By

convention, we delete from the diagram any edges of weight zero. In the above

presentation of G/Gq+X, the relators r\q) have the form

rf = Yl[Xi,Xj]1»   modTv
m

Assume that for each i there is a j such that / ^ 0, i.e., that each initial

form Pj is of degree 2. Then

The conjecture of Murasugi we are dealing with concerns the property (M).

(M) £„(C7) = £K(7^(w-l))for«>2.
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His conjecture was that property (M) held if /■ = ±1 for all i, j . In [8] Maeda

proved the following sharpened form of this conjecture: property (M) holds if

T has a spanning subtree whose edges have weights ± 1 . His proof uses the

Chen groups Cn(G) = GnG"/Gn+XG" , where G' = [G, G] is the derived group

of G and G" is the second derived group of G. He also shows that property

(M) is equivalent to (M) :

(M) Cn(G) = Cn(F(m-l)) for n> 2.

Using this, Massey and Traldi [9] were able to show that (M) was equivalent

to the statement that G2/GJ = 772/773, where 77 = F(m - 1). In this paper we

give a completely independent proof of this result that avoids the use of Chern

groups.

Theorem 2. The following are equivalent:

( 1 ) The linking diagram Y is connected  mod p for every prime p ;

(2) Property (I) holds with s = m and dx = ■ ■ ■ — ds_x = 2 ;

(3) Property (M);

(4) The group £2(C7) is a free Z-module of rank (m - l)(m-2)/2.

The graph Y is said to be connected modulo p if there is a spanning subtree

of T whose edges have weights that are not congruent to zero modulo p . This

theorem sharpens Theorem 3.7 of [2].

Corollary (Massey-Traldi). Let G be the group of an m-component link in S .

Then, for all primes p , the rank of £2(G) <8>z F is greater than or equal to

(m - l)(m - 2)/2 with equality for all primes p if and only if the equivalent

conditions of Theorem 2 hold.

This result follows immediately from the fact that £2(G) is the quotient of

£2(F) by the subgroup generated by those p{, which are of degree 2.

Proof of Theorem 1. It remains only to prove that (2) implies (1). So assume

that (2) holds and let U be the enveloping algebra of £/r. Let V be the free U-

module on generators vx, ... , vs_x with vf of degree d¡ and let M = r/[r, t].

Let y: V -* M be the [/-module homomorphism with y(vt) equal to the image

of Pj in M. Then (I) holds if and only if U is Z-free and y is bijective.

Now let p be a prime, let £ = £ <g> F^ , let /?, be the image of p¡ in £, let

x be the ideal of £ generated by />,,..., ~ps_x and let U be the enveloping

algebra of £/r. If V = V <g> F^ and M = r/[r, t], let y: V -> M be the V-

module homomorphism sending v. = v.® 1 to the image of p~t in M. Then

(I) holds if and only if y is bijective for every prime p .

Let N(t) denote the Poincaré series of a graded vector space /V. If W is

the enveloping algebra of r we have W(t) = (1 - M(t))~ and, if K is the

kernel of y we have

M(t) = (td< +■■■ + td^)V(t) + K(t).
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Using the fact that U(t)W(t) = (1 - mt)   ' , we obtain

V(t)~X = 1 - mt + J2 tdi+ K(t)V(t)~x .
l<i<s

It follows that y is bijective in degrees < n if and only if

(X) V(t) = [ 1 - mt + J2 {d' J mod ̂  ■
V l<i<s      J

Call px, ... , psX «-inert (resp. «-inert mod p) if y (resp. y) is bijective

in degrees < « . Then, since the sequence px, ... , ps_x is «-inert if and only

if it is inert mod p for every prime p , we see that the sequence px, ... , p x

is «-inert if and only if (X) holds for every prime p .

Now suppose that px, ... , psX is «-inert for some « (this is true for « =

0). Then by the proof of [7, Theorem 1, p. 54] we obtain that £/SR equals £/r

in degrees < « + 1 . Since (2) holds we obtain (X) with « replaced by « + 1,

i.e., that px, ... , psX is (n + l)-inert. Thus px, ... , psX is «-inert for all

« , which is Property (I).

Proof of Theorem 2. The implication (1) => (2) is a result of Anick [2, Propo-

sition 3.5].

If (2) holds then we have shown in [7] that r = SR and hence that £(C7) =

£/r. By Anick [2, Theorem 1.6], or by results of [2] in conjunction with [4],

the enveloping algebra of £(G) is a free Z-module whose «th homogeneous

component is of rank equal to the coefficient of t" in the formal power series

(F) (1 -mt + (m- l)t2)~X = ((1 -0(1 -(m- l)t))~l.

The right-hand side of (F) is the Poincaré series for the enveloping algebra of

£(F(l))®£,(F(m-l)), hence £(C7) = £(F(l))©£(F(m-1)) as graded abelian

groups. Since £n(F(l)) = 0 for « > 2, Property (M) follows. That (3) implies

(4) is immediate.

To show that (4) implies (1) let A = (A/(. k)) be the mxm(m-l)/2 matrix,

whose rows are indexed by 1, ... , m and whose columns are indexed by the

pairs (1,7) with 1 </<;'< m, with A/(iJ) = lij,^jUij) = -lu and Xi(jk) = 0

otherwise. Then, since A is a presentation matrix for the abelian group £2(C7),

we see that (4) holds if and only if for every prime p the reduction of A mod p

has rank m - 1 . Since the (i, j)th column of A is /; times a column vector

with entries equal to zero except in the /th and jth rows where the entries are

1 and -1 respectively, we see that the linking diagram of L is connected

mod p if and only if the reduction of A mod p has rank m - 1 .
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Remarks. In [8] Maeda uses the following independence condition:

(Ml)£/t + £ is a free Z-module and the quotient t/tn£" is a free £/(£/£')-

module on the images of px, ... , ps_,.

Here £' = [£, £] is the derived algebra of £ and £" is the second derived

algebra. His main result is to show that (MI) implies that 9\ = r and that

£(C7) is Z-free. However he does not give a formula for the rank of £„(C7)

except in the case each pt is of degree 2, which is enough to settle Murasugi's

conjecture. This he does by giving an algorithm for getting a basis of £„(C7)

that shows that the rank in question depends only on the degrees of the pt s and

their multiplicities. He is therefore reduced to computing the rank in a special

case, which he does in the case of degree 2.

We finish by showing that (MI) implies (I). Since the sequence

0-t/tn £," + £'/£" - fi'/t + £" - 0

is exact, we see that (MI) holds if and only if the elements

(*) ad(c,)V..ad(cm)i"'(/>J),        ik>0,l<j<s-l,

are part of a basis for the graded free Z-module £'/£" and hence part of a

basis of the free Lie algebra £', cf. [6, Prop. 2]. The elements (*) generate r

as an ideal of £' and hence r/[r, r] is a free c/(£'/t)-module on their images

in r/[r, r], cf. [3, Prop. 10]. Since £/(£/£') is the polynomial ring over Z on

£,, ... , t\m it follows that r/[r, r] is a free c/(£/r)-module on the images of

px, ... , ps_x . Also, £/t is Z-free since £/£' is Z-free and £'/t is a free Lie

algebra over Z. Hence (I) holds.

From the above proof one also deduces that (MI) implies that the derived

algebra of £(G) is a free Lie algebra over Z.
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