THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE

JOHN P. LABUTE

(Communicated by Frederick R. Cohen)

ABSTRACT. The Chen-Milnor presentation can be used to determine the Lie Algebra associated to the lower central series of the fundamental group of a link in the 3-sphere S^3 in many interesting cases. We use this fact to obtain new and simpler proofs of unpublished results of Maeda on a conjecture of Murasugi in the sharpened form of Massey and Traldi.

STATEMENT OF RESULTS

Let L be a link in S^3 with m components and let $G = \pi_1(S^3 - L)$ be the group of the link. Let F = F(m) be the free group on x_1, \ldots, x_m and let F_n denote the nth term of the lower central series of F. By a result of Milnor [9, Theorem 4] there are, for each integer $q \ge 1$, elements $w_1^{(q)}, \ldots, w_m^{(q)} \in F$ such that $w_i^{(q+1)} \equiv w_i^{(q)}$ modulo F_{q+1} and such that G/G_{q+1} has the presentation

$$\langle x_1, \dots, x_m : [x_1, w_1^{(q)}] = \dots [x_m, w_m^{(q)}] = 1, F_{q+1} = 1 \rangle$$

where $[x,y]=x^{-1}y^{-1}xy$. Moreover, for any $q\geq 1$, any one of the relators $r_i^{(q)}=[x_i\,,\,w_i^{(q)}]$ is redundant. Let $R^{(q)}$ be the normal subgroup of F generated by $r_1^{(q)}, \ldots, r_m^{(q)}$.

Let $\mathfrak{L} = \mathfrak{L}(F) = \bigoplus_{q \geq 1} \mathfrak{L}_q(F)$ be the Lie algebra associated to the lower central series of F. If ξ_i is the image of x_i in \mathfrak{L}_1 then \mathfrak{L} is the free Lie algebra over \mathbb{Z} on ξ_1, \ldots, ξ_m . Let $\mathfrak{g} = \mathfrak{L}(G)$ be the Lie algebra associated to the lower central series of G. If $\mathfrak{g}^{(q)} = \mathfrak{L}(F/R^{(q)}F_{q+1})$ then $\mathfrak{g}^{(q)} =$ $\bigoplus_{1\leq i\leq q} \mathfrak{g}_i = \mathfrak{L}(G/G_{q+1})$. Since $\mathfrak{g}^{(q+1)} = \mathfrak{g}^{(q)} \oplus \mathfrak{L}_{q+1}(F/R^{(q+1)}F_{q+2})$, we see that $\mathfrak{g}=\bigoplus_{q\geq 1}\mathfrak{L}_q(F/R^{(q)}F_{q+1})$. Hence $\mathfrak{g}=\mathfrak{L}/\mathfrak{R}$ where $\mathfrak{R}=\bigoplus_{q\geq 1}\mathfrak{R}_q$ with $\mathfrak{R}_{q}=\mathrm{Ker}(\mathfrak{L}_{q}(F)\to\mathfrak{L}_{q}(F/R^{(q)}F_{q+1}))$. The ideal \mathfrak{R} is in general very difficult to determine. However, generators for it can be given if the relators $r_i^{(q)}$ satisfy a certain independence condition, which we now describe.

Received by the editors December 5, 1989 and, in revised form, September 6, 1989; presented at the Canadian Mathematical Society Winter Meeting, Vancouver, BC, December 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20F40, 57M25.

952 J. P. LABUTE

Without loss of generality we may assume that $r_i^{(q)} \neq 1$ for $1 \leq i \leq s$ and q sufficiently large while $r_i^{(q)} = 1$ for i > s, $q \geq 1$. Then, for $1 \leq i \leq s$ there are integers d_i , q_i such that for $q \geq q_i$ we have $r_i^{(q)} \in F_{d_i}$ but $\notin F_{d_i+1}$. For $q \geq q_i$ the image of $r_i^{(q)}$ in \mathfrak{L}_{d_i} is independent of q and is denoted by ρ_i . Also one can assume that ρ_s is a linear combination of $\rho_1, \ldots, \rho_{s-1}$, cf. [10, p. 295]. Let \mathfrak{r} be the ideal of \mathfrak{L} generated by $\rho_1, \ldots, \rho_{s-1}$. We have $\mathfrak{r} \subseteq \mathfrak{R}$ but this inclusion is in general proper. If $U = U(\mathfrak{L}/\mathfrak{r})$ is the enveloping algebra of $\mathfrak{L}/\mathfrak{r}$ then $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$ is a U-module via the adjoint representation of $\mathfrak{L}/\mathfrak{r}$. In [7] we show that $\mathfrak{R} = \mathfrak{r}$ if the following condition holds:

(I) $\mathfrak{L}/\mathfrak{r}$ is a free **Z**-module and $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$ is a free *U*-module on the images of ρ_1,\ldots,ρ_{s-1} .

Following [2] and [5], we call a sequence ρ_1,\ldots,ρ_{s-1} of elements of $\mathfrak L$ inert if condition (I) holds. For examples where this condition applies cf. [2], [4]. Anick [2] has shown that (I) holds if and only if, for $n \ge 1$, the *n*th homogeneous component of $\mathfrak L/\mathfrak r$ is a free **Z**-module of rank a_n , where a_n is given by (A):

(A)
$$\prod_{n\geq 1} (1-t^n)^{a_n} = 1 - mt + \sum_{1\leq j < s} t^{d_j}.$$

If (I) holds then the inverse of the above power series is the Poincaré series of the graded algebra $gr(\mathbf{Z}[G]) = \bigoplus_{n\geq 0} I^n/I^{n+1}$, where I is the augmentation ideal of the group ring $\mathbf{Z}[G]$. This follows from the fact that, in this case, $gr(\mathbf{Z}[G])$ is the enveloping algebra of $\mathfrak{L}(G)$, cf. [7].

Theorem 1. The following are equivalent:

- (1) Property (I);
- (2) For $n \ge 1$, $\mathfrak{L}_n(G)$ is a free **Z**-module of rank a_n given by (A).

Now let L be a tame link in S^3 with components K_1, \ldots, K_m and let G be the group of the link. The linking diagram of L is the edge-weighted graph Γ whose vertices are the components of L, with two vertices K_i and K_j being joined by an edge of weight $l_{ij} =$ the linking number of K_i with K_j . By convention, we delete from the diagram any edges of weight zero. In the above presentation of G/G_{g+1} , the relators $r_i^{(q)}$ have the form

$$r_i^{(q)} \equiv \prod_{i \neq i} [x_i, x_j]^{l_{ij}} \mod F_3.$$

Assume that for each i there is a j such that $l_{ij} \neq 0$, i.e., that each initial form ρ_i is of degree 2. Then

$$\rho_i = \sum_{i \neq i} l_{ij} [\xi_i, \xi_j].$$

The conjecture of Murasugi we are dealing with concerns the property (M).

(M)
$$\mathfrak{L}_n(G) \cong \mathfrak{L}_n(F(m-1))$$
 for $n \geq 2$.

His conjecture was that property (M) held if $l_{ij}=\pm 1$ for all i, j. In [8] Maeda proved the following sharpened form of this conjecture: property (M) holds if Γ has a spanning subtree whose edges have weights ± 1 . His proof uses the Chen groups $C_n(G)=G_nG''/G_{n+1}G''$, where G'=[G,G] is the derived group of G and G'' is the second derived group of G. He also shows that property (M) is equivalent to $(\widetilde{\mathbf{M}})$:

$$(\widetilde{\mathbf{M}})$$
 $C_n(G) \cong C_n(F(m-1)) \text{ for } n \geq 2.$

Using this, Massey and Traldi [9] were able to show that (M) was equivalent to the statement that $G_2/G_3 \cong H_2/H_3$, where H = F(m-1). In this paper we give a completely independent proof of this result that avoids the use of Chern groups.

Theorem 2. The following are equivalent:

- (1) The linking diagram Γ is connected mod p for every prime p;
- (2) Property (I) holds with s = m and $d_1 = \cdots = d_{s-1} = 2$;
- (3) Property (M);
- (4) The group $\mathfrak{L}_2(G)$ is a free **Z**-module of rank (m-1)(m-2)/2.

The graph Γ is said to be connected modulo p if there is a spanning subtree of Γ whose edges have weights that are not congruent to zero modulo p. This theorem sharpens Theorem 3.7 of [2].

Corollary (Massey-Traldi). Let G be the group of an m-component link in S^3 . Then, for all primes p, the rank of $\mathfrak{L}_2(G)\otimes_{\mathbf{Z}}\mathbf{F}_p$ is greater than or equal to (m-1)(m-2)/2 with equality for all primes p if and only if the equivalent conditions of Theorem 2 hold.

This result follows immediately from the fact that $\mathfrak{L}_2(G)$ is the quotient of $\mathfrak{L}_2(F)$ by the subgroup generated by those ρ_i , which are of degree 2.

Proof of Theorem 1. It remains only to prove that (2) implies (1). So assume that (2) holds and let U be the enveloping algebra of $\mathfrak{L}/\mathfrak{r}$. Let V be the free U-module on generators v_1 , ..., v_{s-1} with v_i of degree d_i and let $M=\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$. Let $\gamma\colon V\to M$ be the U-module homomorphism with $\gamma(v_i)$ equal to the image of ρ_i in M. Then (I) holds if and only if U is Z-free and γ is bijective.

Now let p be a prime, let $\overline{\mathfrak{L}}=\mathfrak{L}\otimes \mathbf{F}_p$, let $\overline{\rho}_i$ be the image of ρ_i in $\overline{\mathfrak{L}}$, let $\overline{\mathfrak{r}}$ be the ideal of $\overline{\mathfrak{L}}$ generated by $\overline{\rho}_1,\ldots,\overline{\rho}_{s-1}$ and let \overline{U} be the enveloping algebra of $\overline{\mathfrak{L}}/\overline{\mathfrak{r}}$. If $\overline{V}=V\otimes \mathbf{F}_p$ and $\overline{M}=\overline{\mathfrak{r}}/[\overline{\mathfrak{r}},\overline{\mathfrak{r}}]$, let $\overline{\gamma}\colon \overline{V}\to \overline{M}$ be the \overline{U} -module homomorphism sending $\overline{v}_i=v_i\otimes 1$ to the image of $\overline{\rho}_i$ in \overline{M} . Then (I) holds if and only if $\overline{\gamma}$ is bijective for every prime p.

Let N(t) denote the Poincaré series of a graded vector space N. If \overline{W} is the enveloping algebra of $\overline{\tau}$ we have $\overline{W}(t) = (1 - \overline{M}(t))^{-1}$ and, if \overline{K} is the kernel of $\overline{\gamma}$ we have

$$\overline{M}(t) = (t^{d_1} + \dots + t^{d_{s-1}})\overline{U}(t) + \overline{K}(t).$$

954 J. P. LABUTE

Using the fact that $\overline{U}(t)\overline{W}(t) = (1 - mt)^{-1}$, we obtain

$$\overline{U}(t)^{-1} = 1 - mt + \sum_{1 \le i < s} t^{d_i} + \overline{K}(t)\overline{U}(t)^{-1}.$$

It follows that $\overline{\gamma}$ is bijective in degrees $\leq n$ if and only if

$$\overline{U}(t) \equiv \left(1 - mt + \sum_{1 \le i < s} t^{d_i}\right)^{-1} \mod t^{n+1}.$$

Call ρ_1,\ldots,ρ_{s-1} n-inert (resp. n-inert mod p) if γ (resp. $\overline{\gamma}$) is bijective in degrees $\leq n$. Then, since the sequence ρ_1,\ldots,ρ_{s-1} is n-inert if and only if it is inert mod p for every prime p, we see that the sequence ρ_1,\ldots,ρ_{s-1} is n-inert if and only if (X) holds for every prime p.

Now suppose that ρ_1,\ldots,ρ_{s-1} is *n*-inert for some n (this is true for n=0). Then by the proof of [7, Theorem 1, p. 54] we obtain that $\mathfrak{L}/\mathfrak{R}$ equals $\mathfrak{L}/\mathfrak{r}$ in degrees $\leq n+1$. Since (2) holds we obtain (X) with n replaced by n+1, i.e., that ρ_1,\ldots,ρ_{s-1} is (n+1)-inert. Thus ρ_1,\ldots,ρ_{s-1} is n-inert for all n, which is Property (I).

Proof of Theorem 2. The implication $(1) \Rightarrow (2)$ is a result of Anick [2, Proposition 3.5].

If (2) holds then we have shown in [7] that $\mathfrak{r}=\mathfrak{R}$ and hence that $\mathfrak{L}(G)=\mathfrak{L}/\mathfrak{r}$. By Anick [2, Theorem 1.6], or by results of [2] in conjunction with [4], the enveloping algebra of $\mathfrak{L}(G)$ is a free **Z**-module whose *n*th homogeneous component is of rank equal to the coefficient of t^n in the formal power series

$$(F) \qquad (1 - mt + (m-1)t^2)^{-1} = ((1-t)(1-(m-1)t))^{-1}.$$

The right-hand side of (F) is the Poincaré series for the enveloping algebra of $\mathfrak{L}(F(1)) \oplus \mathfrak{L}(F(m-1))$, hence $\mathfrak{L}(G) \cong \mathfrak{L}(F(1)) \oplus \mathfrak{L}(F(m-1))$ as graded abelian groups. Since $\mathfrak{L}_n(F(1)) = 0$ for $n \geq 2$, Property (M) follows. That (3) implies (4) is immediate.

To show that (4) implies (1) let $\Lambda=(\lambda_{i(j,k)})$ be the $m\times m(m-1)/2$ matrix, whose rows are indexed by $1,\ldots,m$ and whose columns are indexed by the pairs (i,j) with $1\leq i< j\leq m$, with $\lambda_{i(i,j)}=l_{ij}$, $\lambda_{j(i,j)}=-l_{ij}$ and $\lambda_{i(j,k)}=0$ otherwise. Then, since Λ is a presentation matrix for the abelian group $\mathfrak{L}_2(G)$, we see that (4) holds if and only if for every prime p the reduction of Λ mod p has rank m-1. Since the (i,j)th column of Λ is l_{ij} times a column vector with entries equal to zero except in the ith and jth rows where the entries are 1 and -1 respectively, we see that the linking diagram of L is connected mod p if and only if the reduction of Λ mod p has rank m-1.

Remarks. In [8] Maeda uses the following independence condition:

(MI) $\mathfrak{L}'/\mathfrak{r} + \mathfrak{L}''$ is a free **Z**-module and the quotient $\mathfrak{r}/\mathfrak{r} \cap \mathfrak{L}''$ is a free $U(\mathfrak{L}/\mathfrak{L}')$ -module on the images of $\rho_1, \ldots, \rho_{s-1}$.

Here $\mathfrak{L}'=[\mathfrak{L},\mathfrak{L}]$ is the derived algebra of \mathfrak{L} and \mathfrak{L}'' is the second derived algebra. His main result is to show that (MI) implies that $\mathfrak{R}=\mathfrak{r}$ and that $\mathfrak{L}(G)$ is Z-free. However he does not give a formula for the rank of $\mathfrak{L}_n(G)$ except in the case each ρ_i is of degree 2, which is enough to settle Murasugi's conjecture. This he does by giving an algorithm for getting a basis of $\mathfrak{L}_n(G)$ that shows that the rank in question depends only on the degrees of the ρ_i s and their multiplicities. He is therefore reduced to computing the rank in a special case, which he does in the case of degree 2.

We finish by showing that (MI) implies (I). Since the sequence

$$0 \to \mathfrak{r}/\mathfrak{r} \cap \mathfrak{L}'' + \mathfrak{L}'/\mathfrak{L}'' \to \mathfrak{L}'/\mathfrak{r} + \mathfrak{L}'' \to 0$$

is exact, we see that (MI) holds if and only if the elements

(*)
$$ad(\xi_1)^{i_1} \cdots ad(\xi_m)^{i_m}(\rho_i), \qquad i_k \ge 0, \ 1 \le j \le s - 1,$$

are part of a basis for the graded free Z-module $\mathfrak{L}'/\mathfrak{L}''$ and hence part of a basis of the free Lie algebra \mathfrak{L}' , cf. [6, Prop. 2]. The elements (*) generate \mathfrak{r} as an ideal of \mathfrak{L}' and hence $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$ is a free $U(\mathfrak{L}'/\mathfrak{r})$ -module on their images in $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$, cf. [3, Prop. 10]. Since $U(\mathfrak{L}/\mathfrak{L}')$ is the polynomial ring over \mathbb{Z} on ξ_1,\ldots,ξ_m it follows that $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$ is a free $U(\mathfrak{L}/\mathfrak{r})$ -module on the images of ρ_1,\ldots,ρ_{s-1} . Also, $\mathfrak{L}/\mathfrak{r}$ is \mathbb{Z} -free since $\mathfrak{L}/\mathfrak{L}'$ is \mathbb{Z} -free and $\mathfrak{L}'/\mathfrak{r}$ is a free Lie algebra over \mathbb{Z} . Hence (I) holds.

From the above proof one also deduces that (MI) implies that the derived algebra of $\mathfrak{L}(G)$ is a free Lie algebra over \mathbb{Z} .

ACKNOWLEDGMENT

We would like to thank L. Traldi for his helpful comments on the Chen-Milnor presentation of a link and the referee for his elegant proof of Theorem 1.

REFERENCES

- D. Anick, Non-commutative graded algebras and their Hilbert series, J. Algebra 78 (1982), 120-140.
- 2. _____, Inert sets and the Lie algebra associated to a group, J. Algebra 111 (1987), 154-165.
- 3. N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1972, Chapter 2.
- 4. R. Hain, Iterated integrals, intersection theory and link groups, Topology 24 (1985), 45-66.
- S. Halperin and J.-M. Lemaire, Suites insertes dans les algèbres de Lie graduée, Math. Scand. 61 (1987), 39-67.
- J. P. Labute, Algèbres de Lie et pro-p-groupes définis par une seule relation, Invent. Math. 4 (1967), 142-158.
- 7. _____, The determination of the Lie algebra associated to the lower central series of a group, Trans. Amer. Math. Soc. 288 (1985), 51-57.

956 J. P. LABUTE

- 8. T. Maeda, Lower central series of link groups, Ph.D. thesis, Univ. of Toronto (1983), 1-104.
- 9. W. S. Massey and L. Traldi, On a conjecture of K. Murasugi, Pacific J. Math. 124 (1986), 193-213.
- J. Milnor, *Isotopy of links*, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton, NJ, pp. 280-306.

Department of Mathematics, McGill University, Montreal, Quebec $H3A\ 2K6$ Canada