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Abstract. Two fixed points of a topological dynamical system are said to be

of the same type if there exists a homeomorphic conjugacy of the system into

itself sending the one fixed point into the other. The system will be said to be

homogeneous if all its fixed points are of the same type. We introduce algebraic

methods to investigate related questions for the shifts of expanding maps.

1. Introduction and statement of results

Given a topological dynamical system (I, T) fixed points ¿;0, Ç'0 e 1 will

be said to be of the same type if there exists a homeomorphism

such that

foT=Tof

and

/«o)=«o

Clearly, being of the same type is an equivalence relation among fixed points.

A dynamical system will be said to be homogeneous if all its fixed points are of

the same type.

The study of properties of fixed points would be rendered uninteresting or

void if the system in question has few or no fixed points. In particular, the

concepts of type and homogeneity should be relevant for dynamical systems

in which fixed points occur abundantly rather in the sense of the concluding

remarks of §4 in [5], In this respect, the present article can be understood as a

sequel to [5].

Our purpose is to point out the natural artifacts that can be employed to

study the fixed points and their types in, and the homogeneity of a dynamical

Received by the editors February 22, 1989 and, in revised form, July 20, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 55M20, 54H20.
Key words and phrases. Expanding maps, Reidemeister numbers, zeta functions.

©1990 American Mathematical Society

0002-9939/90 $1.00+ $.25 per page

263



264 CEM TEZER

system (Za , oa) defined by

Za = \irn(X, a) = {(xAieZ., axi+x = x;, i e Z+}

^(K'),€Z+) = (x,+1),eZ+

where a: X —> X is an expanding map of a smooth compact manifold X [4].

We fix this notation. It is known that an expanding map always has a fixed

point. [4, Theorem 4.1]. We shall let x0 e X denote an arbitrary but fixed fixed

point of a. Clearly £0 = (*0);GZ+ is a fixed point of oa. Indeed, there is a

natural one-to-one correspondence between the fixed points of oa and those of

a, since (x'l)i€Z+ is a fixed point of aa iff x\ = x'0 for all i e Z+ and x'Q is a

fixed point of a .

For the presentation of our results we need some concepts from the classical

homotopy theory of fixed points [2]: Given a group endomorphism a: G -* G,

elements g, g' e G are said to be a-equivalent iff there exists x e G such that

xg = g'a(x). The number R(a) of a-equivalence classes in G is called the

Reidemeister Number of a .

We prove

1.1. Proposition. // a: X —> X is an expanding map of a compact smooth

manifold, then the number of fixed points of a (equivalently that of af¡ is equal

to the Reidememeister number R(af) of

a#: nx(X, x0) -* nx(X, x0).

Indeed, the set of fixed points of a is in a natural one-to-one correspondence

with the set of ^-equivalence classes in nx(X, x0).

This is not at all an unexpected result in view of the strong geometry of

expanding maps. However we have failed to find it in the literature.

Writing Ad[g]: G —» G for the inner automorphism induced by g e G,

defined by

Ad[g](x) = gxg'1

we formulate

1.2. Proposition. If a: X —> X is an expanding map of a compact smooth

manifold, then the types of fixed points of oa are in one-to-one correspondence

with the shift equivalence ([5, 6, 7]) classes in the set

{Ad[(X)]oa#,(X)enx(X,x0)}

1.3. Corollary. If a: X -+ X is an expanding map of a smooth compact mani-

fold, CLa, oa) is homogeneous iff all endomorphisms

Ad[(X)]oa#: nx(X, xQ) — nx(X, x0),     (X) e nx(X, xQ)

are shift equivalent.

1.4. Proposition. If a is an expanding map of the Klein bottle, then aa is

inhomogeneous.
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It can be readily seen that 1.3 is a direct consequence of 1.2 . We also note

that 1.1 and 1.2 are nicely compatible in that, if (X), (p) e nx(X, x0) are

a#-equivalent, then Ad[(A)]oa# and Ad[(p)]oa# are shift equivalent. (Indeed,

conjugate.)

2. Proofs

2.1. Proof of 1.1. Let X be the simply connected covering space of X, p : X —►

X the corresponding covering projection. Let's take a point x0 e X with

px0 = x0 and let a: X —> X be the unique lifting of a with the property

a(xQ) = x0. There is an isomorphism i of nx(X,x0) onto Y, the group

of covering transformations of p: X —► X. For each (X) e nx(X, x0) we can

understand i((X)) to be the unique covering transformation sending x0 to A(l)

where X is the unique lifting of X with 1(0) = x0 . The fact that a: X -* X is

an expanding map is independent of the Riemann metric on X : So we can take

any Riemann metric on X and lift it to X via p thus ensuring that p is a local

isometry, each i((X)) is an isometry, and finally each i((X)) oä is an expanding

diffeomorphism with a unique fixed point. Now, to each (X) e nx(X, x0) we

let Xq = p(x0) correspond where ~x0 is the unique fixed point of i((X))oa~.

First we show that every fixed point of a corresponds in this manner to some

(X) e nx(X, x0) : If Xq is a fixed point of a, let ~a be the unique lifting of

a with a1 (x'q) = Xq for some Xq e p~l(x'0). As ä and a are liftings of the

same map, they differ by a covering transformation. Consequently there exists

(X) e nx(X, xQ) such that a = i((X)) o a . Secondly we show that if the fixed

point x'q corresponds to (X), (p) enx(X, x0) then the latter are a#-equivalent:

There exist x0, x0' € p" (x0) such that

z(W)oä(x0) = x0,

i({p))oa(xlQ) = xJQ.

Consequently

z(W_1)(x0) = ä(x0),

i({p)~l)(xJ¿) = a(x'¡)).

On the other hand, since x'q, x'q ep~l(x'0), there exists (to) e nx(X, x0) such

that

Xq = Í({C0))(Xq).

Hence

i((p)-l)oi({œ))(x0)=â(i((co))(x0))

= i(a#((co))) oä(x0),

and

i((p)-\cd))(Xq) = i(a#((to))(X)-x)tfo).
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Therefore

(p)-\to) = a#((œ))(X)-i,

and

(co)(X) = (p)a#((co)).

2.2. Proof of 1.2. This is a simple consequence of Theorem 4.5 and Lemmas

5.6, 5.10 in [5]. The fundamental group of the Klein bottle ([5]) is of the form

G = {A, B\AB = BA~[)

and an expanding map a of the Klein bottle is determined up to homotopy by

three integers p , q , r with \p\, \r\ / 0, 1, r odd. Given a = a(p, q, r), we

have

a# = cp(p, q, r): G ^ G

defined by
r a-* A*

<P{P>9'r):\B-.A«B'

2.3. Proof of 1.4. aa is homogeneous iff Ad[^ B ]°<p(p, q, r) is shift equiv-

alent to <p(p , q , r) for any U, V e Z . But

Ad[AUBV]o(p(p,q,r) = cp((-l)Vp,(-\)Vq + 2U,r)

and in order for this map to be shift equivalent to cp(p, q, r), it is necessary

by 6.1 in [5] that p = (-1) p , which cannot be if V is odd.

3.  A COMPUTATIONAL EXAMPLE

We would like to show how the Reidemeister number can be employed to

calculate the number of fixed points and eventually the Artin-Mazur zeta func-

tion of an expanding map of the Klein bottle: By 1.1 counting the fixed points

of a - a(p, q, r) is the same as counting the cp(p, q, z-)-equivalence classes

in G — (A, B\AB = BA~ ). Every element of G can be uniquely expressed in

the form AgB and the elements A8B , Ag B are cp(p, q, z-)-equivalent iff

there exist integers x , y such that

AxByAgBh = Ag,Bh'<p(p,q,r)(AxBy),

or
¿x+i-iyggy+h = As'Bh'{APY{A«BrY f

or
AxH-yfgßy+h = ¿g'yApx A<lnW Bry

in view of AB - BA~ , where n is the unique parity preserving function from

Z onto {0, 1}. Finally

.x+(-l)fg „y+h _    .#'+(-1)* (px+qn(y)) Bh'+ry
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Consequently AgB   and Ag B    are in the same cp(p, q, r)-equivalence class

iff there exist integers x , y such that

x + (-l)yg = g' + (-lf(px + qn(y))

y + h = h' + ry,

or upon regrouping

(-\)yg - g = ((-l)"'p - \)x + qn(y)

h - h = (r - \)y.

Note that h = h' (mod 2) as r is odd. Let

Í(g,h)eZ xZ,0<h <2\r- 1| - 1
,0<g<\p-l\-l     if h even

, 0 < g < \p + 11 - 1     if h odd.

A simple inspection reveals that the set {AgB  , (g, h) e Q} contains exactly

two representatives of each cp(p, q, r)-equivalence class, hence

R(<p(p,q,r))=X-#(Q)

= i|r-l|(|p-l| + |p+l|) = |r-lHp|

remembering r, p ^ 0, 1,-1. Since

([5]).

[ç>(/7,tf,r)]   =ç>(/z  .«(l+p + '-'+jP      ),r)

Ln.a.AZ) = eXP'a(p,q,r

oo      .

-v -np vm

1 -sgn(r)\p\z

1 - \pr\z

4. Remarks

An explicit calculation of the number of fixed point types for general p , q , r

appears to be difficult owing to the complications that attend the computational

aspects of shift equivalence of cp(p, q, r) as indicated in 6.1 of [5].

Disproportionate as it is to the modest scope and aims of this work, we would

like to conclude by formulating a conjecture. First notice, that the proofs of

1.1, 1.2, 1.3 can be easily modified to apply to any hyperbolic endomorphism

of an infranilmanifold. This is a true extension of the above results in view

of the recently established fact that expanding maps are infranilmanifold endo-

morphisms ([3]). This leads us to the

Conjecture. If a: X —► X is a hyperbolic endomorphism of an infranilmanifold,

then (2a , aa) is homogeneous iff a is a nilmanifold endomorphism.
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