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ON THE VOLUME OF THE INTERSECTION OF TWO L"p BALLS

G. SCHECHTMAN AND J. ZINN

(Communicated by William J. Davis)

Abstract. In this note we prove that the proportion of the volume left in the

n n -ctpnp^
L    ball after removing a /-multiple of the L    ball is of order e

1. Introduction

This note deals with the following problem, the case p = 1, q = 2 of

which was raised by Vitali Milman: What is the volume left in the L" ball

after removing a i-multiple of the L" ball? Recall that the L" ball is the set

{(?, , f2, ... , tn); ti■ e R, zz"' J2"=i \t¿\r < 1} and note that for 0 < p < q < oo

the L" ball is contained in the Lp ball.

In Corollary 4 below, we show that after normalizing Lebesgue measure so

that the volume of the Ln ball is one, the answer to the problem above is of

— cfnp^q i     I/o—I/o
order e for T < t < jn ' , where c and T depend on p and q

but not on n .

The main theorem, Theorem 3, deals with the corresponding question for a

certain measure on the Lp sphere. Theorem 3 and Corollary 4, together with

some other remarks, form §3. In §2 we introduce a class of random variables

to be used in proving the main theorem. These random variables are related to

L   in the same way that Gaussian variables are related to L2.

2. Preliminaries

Here we introduce a class of random variables to be used in the proof of the

main theorem, and we summarize some of their properties. Fix a 0 < p < oo

and let x, xx,x2, ... , xn be independent random variables each with density

function ce     , t > 0. Note that necessarily c  = p/T(i/p). Let A   denote
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218 G. SCHECHTMAN AND J. ZINN

the positive quadrant of the sphere of /" , i.e.,

A, = {('i,'2>--->0;^M< =:£< = !},

and for, A, Lebesgue measure on R" , let p be the Borel probability on Ap

given by

^¿({teRl-.^eA,    \\t\\p<l})

ß{Ä) " A({zeR::||z||p<l}) •

Notice that for all e > 0,

p(A)
X({(tx ,...,tn)eR+-A:a-e< \\t\\p <a + e})

¿({(tx,...,tn)eRn+:a-e<\\t\\p<a + e})

]

and that for all p ,

Note that for p = 1  and p = 2 p is the normalized surface measure on A ,

v(A) - n I   r"    pl — )dr

where v denotes the normalized Lebesgue measure on the positive quadrant of

the /" ball. The first claim is known, though we could not locate a reference.

Lemma 1. Put S = (J2"=i xf)     >' men (^ »§>•••» if) induces the measure

p over the positive quadrant of the sphere of I". Moreover, (§■, ^.^ ) is

independent of S.

Proof. For any Borel subset A of A

'((f2--^M
P((x., ... ,x)e R+A &a-e<S<a + e)

= I"" —:-!-777-±—x-:-
£^o                   P(a-e <S <a + e)

= 1}3Í C.'.)€M    e'^dt     Í  (/|.,JeR»     e'^rf/
•>-£)"<£/f«^)" /     J(a-ef<Y^^<(a+e)p

<limsup<>~< (t,,...,tn)e*+A    dt (i, ....,,„ )6R"+     dt

e~*° ■'(a-ef^t'^a+ef      I    J\a-tf<¿ f°<(a+ef

= p(A).

Similarly,

'({%■%—$)*W-)**4>.

This proves that P((^ , § , ... , %■) e A) = /Z(/l) and that ($■, ^, ... , ^) is

independent of S.   D

In the next claim we gather some more properties of the random variables

*/•
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Lemma 2. Let x, xx, ... , xn be as above; then

1. cp is bounded away from zero and infinity when p-»oc.

2. For all h > 0 and all 0 < p < oo, Ee""**" = (j±j¡)l/p ■ In particular,

Ee~hx> > e~h/p for all h > 0 and Ee~hx' < e~h/2p for all 0 < h < 1.

3. For all 0 < zz < oo ¿zzzrf all 0 < p < oo, P(xp > u) > ^e~2u. If p > 1

ízzíú? w > 1, f/zezz a/so P(xp > u) < c-£e~u   . In particular, for p > 1

and all u, P(xp > u) < Ce       for some universal C.

4. For all \<p<q<oo,ifn is large enough, then E(Yfl=x xf)'9  is

equivalent, with universal constants, to q 'pn 'p, if q < logzz, and to

(logzz) 'p, otherwise.

Proof.

(1) follows easily from the fact that c  = p/T(\/p) = Y(^ + l)'

(2) is a simple computation.

(3) is also simple; here is a sketch of the proof.

--cn (    e f c
Ju

(«+l)l/"

> Cn -;—TTTe     dt
-  p Juup        n<„ a- n(p-i)/i>

pr    '      n-f

p(u+l){

Cn Í. 1/'

p(u+l){p-l)/p

>-C-£-e~"
- 2p(u+ 1)

.     Cp     -2u

\--\e
—u

2p

The other inequality in (3) is proved in a similar way.

(4) First note that for all 0 < p , q < oo

"'-[¡«■'«-Wt)
so that, by Holder's inequality and 1 above, if 1 < p < q < oo,

P    V   P

for some universal C. For the lower bound, note first that, by (3) above,

P ( max xt > t] > 1 - I 1 - ^-e~2,t
J<i<n    ' ) \ 2p

For n > 20p/c , choose t = 2l/p(\og^)i/p to get that, for some universal c,

p( max x, >c(\ogn)i/p) > 1/2.
\l<'<n /
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AIPIn particular, Emax|<(</1 x¡ > c(logzz) . This already implies the claim if q >

logzz, since in this case (J2"=\ x<!) is universally equivalent to maxx<¡<nxj.

If q < logzz, divide {1, 2, ... , zz} into approximately n/eq disjoint sets of

cardinality approximately e9 each; then

MIX
1/9

.1 = 1

> I ^   E max x,

>c'(logeq)l/p(n/eq)l/q

.       ii    \¡p    1/9
> c q    n '  . D

The statement in Lemma 2.4, for the case p — 2, was noticed by the first-

named author several years ago while seeking a precise estimate for the dimen-

sion of the Euclidean sections of /" spaces (see [MS] p. 145, Remark 4.5). The

original proof was more complicated. The proof presented here is an adaptation

of a proof of the case p = 2 shown to us by J. Bourgain.

3. The main result

Theorem 3. For all 1 < p < q < co there are constants c = c(p, q),   C =

C(p, q), and T = T(p, q) such that if p denotes the probability measure on

the positive quadrant of the unit sphere of L" given by p(A) = p(nl'pA), then

(1)

for all t > T, and

(2)

p(\\u\\r >t)<exo(-cfnPlq)

ß(\\u\\Ln >t)>exp(-Ctpnp,q)

for all 2<t<\n"p-'lq.
Moreover, for q > 2p (or any other universal positive multiple of p), one

can take c(p, q) = £ , C(p, q) = £ , and T(p, q) = rmin{^, logzz}1''' < ql'p .

Here y , T, and x are universal constants.

Proof. By Lemma 1 above,

p(\\u\\L» >t) = P \n
l/p-l/9

> t
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where xi are independent random variables each with density ce     . Assume,

for the simplicity of the presentation, that zz is even.  Put S = lf£fi=x xp)]/p

and let p., j = 1, 2, ... , n/2, be positive numbers with sum < 1/2. Then

(3) =P[Exi >
.1=1 nQ/P-I

<Y^P(x*>tp)lqSlnllp-"q) + p{   ¿   x*q>tqSq/2nq/p

1=1 \i=«/2+l

where {x*} denotes the nonincreasing rearrangement of {\x]} .

Since
/,«/2        ^qlP

E*9 ^  n     *q     .   «       f V^ v*p
•'•   S 2   "/2S 2     /i¿-*'"

y=«/2+i y    i=i

■    < 2M,p-xSqln9lP^,

we get that, if í > 2 'p, the second term in (3) is zero.

To evaluate the first term in (3), fix 1 < j < n/2. Then,

P(x] > tp)'qSln"p'xlq) < [^j)P{xx, ... , Xj > tpl/qS/nl/p-i/q)

<{])pU,...,xp>fpplq±xpJn^-A.

From Lemma 2.3 and 2.2 we get that the last expression is dominated by

(^^Eexpi-^Vèxf/zz1-^

<(ynjyjexp(-jpplqtp(n-j)l2pnx-plq)

for some universal C. Note that the last inequality holds if jnp'9~lpP f < 1 .

If this is not the case, the probability we are trying to evaluate is zero. Finally,

the last term is dominated by

(   i     en pPlqfnplq'
(4) exp   j    log— + C - -J-^-

Now, for a to be chosen momentarily, let p., j = I , ... , n/2 ,be such that

np/qfp„p/ct\
en Pj   ' n f

log— + C- -J—^-
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that is,

/.   logf       4Cp        4p\
o  =    4p-f- +-V -(- a —

qIp

(5)

We thus get that, for some universal constant C,

It is easy to see that, for 1 < p < q < oo

"I2 /      „„\«¡p

E
"/2  f       Pn\ql"
£ (log — J      < ,4zz mining, (log /i)"'}

for some universal A . Thus the sum over the first terms in (5) is smaller than

1/4 if, for some universal y, t > ymin{qi/p, (logzz)1/p}. The second term

is bounded by 1/4 if a < #£(§ - 1) , for some universal B. Choosing

q to satisfy this inequality and using (3), (4), and (5) we get that, for t >

ymin{ql/p,(logn)[/p},

p(\\u\\Lr, >t)<-e
1 I

Under the conditions on t, the factor zz/2 can be absorbed in the second term

(changing a to another constant of the same order of magnitude as a function

of p), thus proving (1).

We now turn to the proof of the lower bound (2), which is simpler. Using

Lemma 1 again,

>P(xx>St/nl/p-l/q]

(nA-P/i)_iPy/P

Since tp < x2n({~plq), this dominates

E*ia"
,1=2

'h>;A(¿*0'"
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Now, by Lemma 2.3,

AlPf     ( "

M^I^IE*?)^! >¿EexP^gxf/n

= ^(Eexp(-4tpxPx/n{[-p/q)))n~l
2p

(n-\)/p

_   CP

2P     1 + At"
,'-p/<i

tPl

(by Lemma 2.2)

>   <^4rV"/„
- 2p

Finally observe that, since cp is bounded away from zero and t > 2, the

factor 2^ can be absorbed in the second term (changing 4 to another universal

constant).    D

Remarks. 1. It follows from the proof that, for zz large enough and q close to

p , one can take c(p, q) = |(^ - 1) for some universal constant c.

2. It follows from the statement of the theorem that, for q = oc ,

for all t > r(logn)[/p , and

p(\\u\\>t)<e-y'PlP

P(\\u\\    >t)> e-Vflp

for all 2 < t < \ n lP , where y, Y, and t are universal constants.

3. Note that it follows from Lemma 1 and Lemma 2.4 that the order of

magnitude of T is the correct one.

4. The restriction p > 1 in Theorem 3 above and in Corollary 4 below can

be replaced by p > 0 if one replaces the inequality / > 2 with t > d, for some

d depending only on p and q , and if one removes the "moreover" part. We

didn't check the dependence of the constants on p and q in this case.

5. The measure p  and the normalized Lebesgue measure are equivalent
1 !2

with constant at most zz ' . It follows that a similar statement holds also for

the normalized Lebesgue measure on the positive quadrant of the unit sphere of

Ln . For p — 1 and p — 2 the measures p and normalized Lebesgue measure

on the positive quadrant of the Ln sphere are equal.

Our last remark is that one can get a similar statement for the full balls. We

state it as a corollary.
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Corollary 4. For all 1 < p < q < oo, there are constants c = c(p, q),  C —

C(p, q), and T = T(p, q) such that if v denotes the normalized Lebesgue

measure on the ball of Lnp , then for all n large enough,

(6) H\\u\\L* >t)< exv(-ctpnp/q)

for all t > T, and

(1) v(\\u\\r>t)>exo(-Ctpnplq)
«

for all 2 < t < \n'p~ . Moreover, for q > 2p (or any other universal

positive multiple of p), one can take c(p, q) = 'j , C(p, q) = j, and T(p, q) =

Tmin{<7, logzz}     <q     , where y ,T, and r are universal constants.

The proof follows easily from Theorem 3 and the formula

v(A) = n      r"    p Í — J dr,

which holds for all Borel sets A in the ball of Ln .

References

[MS]   V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces,

Lecture Notes in Math., vol. 1200, Springer-Verlag, New York, 1986.

Department of Theoretical Mathematics, The Weizmann Institute of Science, Re-

hovot, Israel

Department of Mathematics, Texas A&M University, College Station, Texas 77843


