ON THE VOLUME OF THE INTERSECTION OF TWO L_{p}^{n} BALLS

G. SCHECHTMAN AND J. ZINN
(Communicated by William J. Davis)

Abstract

In this note we prove that the proportion of the volume left in the L_{p}^{n} ball after removing a t-multiple of the L_{q}^{n} ball is of order $e^{-c t^{p} n^{p / q}}$.

1. Introduction

This note deals with the following problem, the case $p=1, q=2$ of which was raised by Vitali Milman: What is the volume left in the L_{p}^{n} ball after removing a t-multiple of the L_{q}^{n} ball? Recall that the L_{r}^{n}. ball is the set $\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) ; t_{i} \in \mathbf{R}, n^{-1} \sum_{i=1}^{n}\left|t_{i}\right|^{r} \leq 1\right\}$ and note that for $0<p<q<\infty$ the L_{q}^{n} ball is contained in the L_{p}^{n} ball.

In Corollary 4 below, we show that after normalizing Lebesgue measure so that the volume of the L_{p}^{n} ball is one, the answer to the problem above is of order $e^{-c t^{p} n^{p / q}}$ for $T<t<\frac{1}{2} n^{1 / p-1 / q}$, where c and T depend on p and q but not on n.

The main theorem, Theorem 3, deals with the corresponding question for a certain measure on the L_{p}^{n} sphere. Theorem 3 and Corollary 4, together with some other remarks, form $\S 3$. In $\S 2$ we introduce a class of random variables to be used in proving the main theorem. These random variables are related to L_{p} in the same way that Gaussian variables are related to L_{2}.

2. Preliminaries

Here we introduce a class of random variables to be used in the proof of the main theorem, and we summarize some of their properties. Fix a $0<p<\infty$ and let $x, x_{1}, x_{2}, \ldots, x_{n}$ be independent random variables each with density function $c_{p} e^{-t^{p}}, t>0$. Note that necessarily $c_{p}=p / \Gamma(1 / p)$. Let Δ_{p} denote

[^0]the positive quadrant of the sphere of l_{p}^{n}, i.e.,
$$
\Delta_{p}=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) ; t_{i} \geq 0,\|t\|_{p}^{p}=: \sum t_{i}^{p}=1\right\}
$$
and for, λ, Lebesgue measure on \mathbf{R}^{n}, let $\bar{\mu}$ be the Borel probability on Δ_{p} given by
$$
\bar{\mu}(A)=\frac{\lambda\left(\left\{t \in \mathbf{R}_{+}^{n}: \frac{t}{\|t\|_{p}} \in A, \quad\|t\|_{p} \leq 1\right\}\right)}{\lambda\left(\left\{t \in \mathbf{R}_{+}^{n}:\|t\|_{p} \leq 1\right\}\right)}
$$

Notice that for all $\varepsilon>0$,

$$
\bar{\mu}(A)=\frac{\lambda\left(\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}_{+} \cdot A: a-\varepsilon<\|t\|_{p} \leq a+\varepsilon\right\}\right)}{\lambda\left(\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}_{+}^{n}: a-\varepsilon<\|t\|_{p} \leq a+\varepsilon\right\}\right)}
$$

Note that for $p=1$ and $p=2 \bar{\mu}$ is the normalized surface measure on Δ_{p}, and that for all p,

$$
\bar{\nu}(A)=n \int_{0}^{1} r^{n-1} \bar{\mu}\left(\frac{A}{r}\right) d r
$$

where $\bar{\nu}$ denotes the normalized Lebesgue measure on the positive quadrant of the l_{p}^{n} ball. The first claim is known, though we could not locate a reference.

Lemma 1. Put $S=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}$; then $\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right)$ induces the measure $\bar{\mu}$ over the positive quadrant of the sphere of l_{p}^{n}. Moreover, $\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right)$ is independent of S.
Proof. For any Borel subset A of Δ_{p},

$$
\begin{aligned}
& P\left(\left.\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right) \in A \right\rvert\, S=a\right) \\
& =\lim _{\varepsilon \rightarrow 0} \frac{P\left(\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}_{+} A \& a-\varepsilon \leq S \leq a+\varepsilon\right)}{P(a-\varepsilon \leq S \leq a+\varepsilon)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \limsup _{\varepsilon \rightarrow 0} e^{-(a-\varepsilon)^{p}+(a-\varepsilon)^{p}} \int_{(a-\varepsilon)^{p}<\sum_{i} t_{i}^{p}<(a+\varepsilon)^{p}} t_{\left(t_{1}, \ldots, t_{n} \in \mathbf{R}_{+} A\right.} d t / \int_{(a-\varepsilon)^{p}<\sum_{i} t_{i}^{p}<(a+\varepsilon)^{p}}^{\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}_{+}^{n}} d t \\
& =\bar{\mu}(A) .
\end{aligned}
$$

Similarly,

$$
P\left(\left.\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right) \in A \right\rvert\, S=a\right) \geq \bar{\mu}(A)
$$

This proves that $P\left(\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right) \in A\right)=\bar{\mu}(A)$ and that $\left(\frac{x_{1}}{S}, \frac{x_{2}}{S}, \ldots, \frac{x_{n}}{S}\right)$ is independent of S.

In the next claim we gather some more properties of the random variables x_{i}.

Lemma 2. Let x, x_{1}, \ldots, x_{n} be as above; then

1. c_{p} is bounded away from zero and infinity when $p \rightarrow \infty$.
2. For all $h>0$ and all $0<p<\infty, \mathbf{E} e^{-h x^{p}}=\left(\frac{1}{1+h}\right)^{1 / p}$. In particular, $\mathbf{E} e^{-h x^{p}} \geq e^{-h / p}$ for all $h>0$ and $\mathbf{E} e^{-h x^{p}} \leq e^{-h / 2 p}$ for all $0<h \leq 1$.
3. For all $0<u<\infty$ and all $0<p<\infty, P\left(x^{p}>u\right) \geq \frac{c_{p}}{2 p} e^{-2 u}$. If $p \geq 1$ and $u \geq 1$, then also $P\left(x^{p}>u\right) \leq \frac{c_{p}}{p} e^{-u / 2}$. In particular, for $p \geq 1$ and all $u, P\left(x^{p}>u\right) \leq C e^{-u / 2}$ for some universal C.
4. For all $1 \leq p \leq q<\infty$, if n is large enough, then $\mathbf{E}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q}$ is equivalent, with universal constants, to $q^{1 / p} n^{1 / p}$, if $q \leq \log n$, and to $(\log n)^{1 / p}$, otherwise.

Proof.
(1) follows easily from the fact that $c_{p}=p / \Gamma(1 / p)=\Gamma\left(\frac{1}{p}+1\right)^{-1}$.
(2) is a simple computation.
(3) is also simple; here is a sketch of the proof.

$$
\begin{aligned}
P\left(x^{p}>u\right) & =c_{p} \int_{u^{1 / p}}^{\infty} e^{-t^{p}} d t \\
& \geq c_{p} \int_{u^{1 / p}}^{(u+1)^{1 / p}} \frac{p t^{(p-1)}}{p(u+1)^{(p-1) / p}} e^{-t^{p}} d t \\
& =\frac{c_{p}}{p(u+1)^{(p-1) / p}}\left(1-\frac{1}{e}\right) e^{-u} \\
& \geq \frac{c_{p}}{2 p(u+1)} e^{-u} \\
& \geq \frac{c_{p}}{2 p} e^{-2 u}
\end{aligned}
$$

The other inequality in (3) is proved in a similar way.
(4) First note that for all $0<p, q<\infty$

$$
\mathbf{E} x^{q}=c_{p} \int_{0}^{\infty} t^{q} e^{-t^{p}} d t=\frac{c_{p}}{p} \Gamma\left(\frac{q+1}{p}\right)
$$

so that, by Holder's inequality and 1 above, if $1 \leq p \leq q<\infty$,

$$
\mathbf{E}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} \mathbf{E} x_{i}^{q}\right)^{1 / q}=\left(\frac{c_{p}}{p} \Gamma\left(\frac{q+1}{p}\right)\right)^{1 / q} n^{1 / q} \leq C q^{1 / p} n^{1 / q}
$$

for some universal C. For the lower bound, note first that, by (3) above,

$$
P\left(\max _{1 \leq i \leq n} x_{i}>t\right) \geq 1-\left(1-\frac{c_{p}}{2 p} e^{-2 t^{p}}\right)^{n}
$$

For $n \geq 20 p / c_{p}$, choose $t=2^{1 / p}\left(\log \frac{n c_{p}}{2 p}\right)^{1 / p}$ to get that, for some universal c,

$$
P\left(\max _{1 \leq i \leq n} x_{i}>c(\log n)^{1 / p}\right) \geq 1 / 2
$$

In particular, $\mathbf{E} \max _{1 \leq i \leq n} x_{i} \geq c(\log n)^{1 / p}$. This already implies the claim if $q>$ $\log n$, since in this case $\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q}$ is universally equivalent to $\max _{1 \leq i \leq n} x_{i}$. If $q \leq \log n$, divide $\{1,2, \ldots, n\}$ into approximately n / e^{q} disjoint sets of cardinality approximately e^{q} each; then

$$
\begin{aligned}
\mathbf{E}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} & =\mathbf{E}\left(\sum_{j}\left(\sum_{i \in \sigma_{j}} x_{i}^{q}\right)^{q / q}\right)^{1 / q} \\
& \geq \mathbf{E}\left(\sum_{j}\left(\max _{i \in \sigma_{j}} x_{i}\right)^{q}\right)^{1 / q} \\
& \geq\left(\sum_{j}\left(\mathbf{E} \max _{i \in \sigma_{j}} x_{i}\right)^{q}\right)^{1 / q} \\
& \geq c^{\prime}\left(\log e^{q}\right)^{1 / p}\left(n / e^{q}\right)^{1 / q} \\
& \geq c^{\prime \prime} q^{1 / p} n^{1 / q} \cdot \square
\end{aligned}
$$

The statement in Lemma 2.4, for the case $p=2$, was noticed by the firstnamed author several years ago while seeking a precise estimate for the dimension of the Euclidean sections of l_{p}^{n} spaces (see [MS] p. 145, Remark 4.5). The original proof was more complicated. The proof presented here is an adaptation of a proof of the case $p=2$ shown to us by J. Bourgain.

3. The main result

Theorem 3. For all $1 \leq p<q<\infty$ there are constants $c=c(p, q), C=$ $C(p, q)$, and $T=T(p, q)$ such that if μ denotes the probability measure on the positive quadrant of the unit sphere of L_{p}^{n} given by $\mu(A)=\bar{\mu}\left(n^{1 / p} A\right)$, then

$$
\begin{equation*}
\mu\left(\|u\|_{L_{q}^{n}}>t\right) \leq \exp \left(-c t^{p} n^{p / q}\right) \tag{1}
\end{equation*}
$$

for all $t>T$, and

$$
\begin{equation*}
\mu\left(\|u\|_{L_{q}^{n}}>t\right) \geq \exp \left(-C t^{p} n^{p / q}\right) \tag{2}
\end{equation*}
$$

for all $2 \leq t \leq \frac{1}{2} n^{1 / p-1 / q}$.
Moreover, for $q>2 p$ (or any other universal positive multiple of p), one can take $c(p, q)=\frac{\gamma}{p}, C(p, q)=\frac{\Gamma}{p}$, and $T(p, q)=\tau \min \{q, \log n\}^{1 / p} \leq q^{1 / p}$. Here γ, Γ, and τ are universal constants.
Proof. By Lemma 1 above,

$$
\mu\left(\|u\|_{L_{q}^{n}}>t\right)=P\left(n^{1 / p-1 / q}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} /\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}>t\right)
$$

where x_{i} are independent random variables each with density $c_{p} e^{-t^{p}}$. Assume, for the simplicity of the presentation, that n is even. Put $S=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}$ and let $p_{j}, j=1,2, \ldots, n / 2$, be positive numbers with sum $\leq 1 / 2$. Then

$$
\begin{align*}
& P\left(n^{1 / p-1 / q}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} /\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}>t\right) \\
& \quad=P\left(\sum_{i=1}^{n} x_{i}^{q}>\frac{t^{q}\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{q / p}}{n^{q / p-1}}\right) \tag{3}\\
& \quad \leq \sum_{i=1}^{n / 2} P\left(x_{i}^{*}>t p_{i}^{1 / q} S / n^{1 / p-1 / q}\right)+P\left(\sum_{i=n / 2+1}^{n} x_{i}^{* q}>t^{q} S^{q} / 2 n^{q / p-1}\right)
\end{align*}
$$

where $\left\{x_{j}^{*}\right\}$ denotes the nonincreasing rearrangement of $\left\{\left|x_{j}\right|\right\}$.
Since

$$
\begin{aligned}
\sum_{j=n / 2+1}^{n} x_{i}^{* q} & \leq \frac{n}{2} x_{n / 2}^{* q} \leq \frac{n}{2}\left(\frac{2}{n} \sum_{i=1}^{n / 2} x_{i}^{* p}\right)^{q / p} \\
& \leq 2^{q / p-1} S^{q} / n^{q / p-1}
\end{aligned}
$$

we get that, if $t \geq 2^{1 / p}$, the second term in (3) is zero.
To evaluate the first term in (3), fix $1 \leq j \leq n / 2$. Then,

$$
\begin{aligned}
P\left(x_{j}^{*}>t p_{j}^{1 / q} S / n^{1 / p-1 / q}\right) & \leq\binom{ n}{j} P\left(x_{1}, \ldots, x_{j}>t p_{j}^{1 / q} S / n^{1 / p-1 / q}\right) \\
& \leq\binom{ n}{j} P\left(x_{1}^{p}, \ldots, x_{j}^{p}>t^{p} p_{j}^{p / q} \sum_{i=j+1}^{n} x_{i}^{p} / n^{1-p / q}\right)
\end{aligned}
$$

From Lemma 2.3 and 2.2 we get that the last expression is dominated by

$$
\begin{aligned}
\binom{n}{j} & C^{j} \mathbf{E} \exp \left(-j p_{j}^{p / q} t^{p} \sum_{i=j+1}^{n} x_{i}^{p} / n^{1-p / q}\right) \\
& \leq\binom{ n}{j} C^{j} \exp \left(-j p_{j}^{p / q} t^{p}(n-j) / 2 p n^{1-p / q}\right)
\end{aligned}
$$

for some universal C. Note that the last inequality holds if $j n^{p / q-1} p_{j}^{p / q} t^{p} \leq 1$. If this is not the case, the probability we are trying to evaluate is zero. Finally, the last term is dominated by

$$
\begin{equation*}
\exp \left(j\left(\log \frac{e n}{j}+C-\frac{p_{j}^{p / q} t^{p} n^{p / q}}{4 p}\right)\right) \tag{4}
\end{equation*}
$$

Now, for α to be chosen momentarily, let $p_{j}, j=1, \ldots, n / 2$, be such that

$$
j\left(\log \frac{e n}{j}+C-\frac{p_{j}^{p / q} t^{p} n^{p / q}}{4 p}\right)=-\alpha n^{p / q} t^{p}
$$

that is,

$$
p_{j}=\left(4 p \frac{\log \frac{e n}{j}}{t^{p} n^{p / q}}+\frac{4 C p}{t^{p} n^{p / q}}+\alpha \frac{4 p}{j}\right)^{q / p}
$$

We thus get that, for some universal constant C,

$$
\begin{equation*}
p_{j} \leq 2^{q / p-1} \frac{(C p)^{q / p}\left(\log \frac{e n}{j}\right)^{q / p}}{t^{q} n}+2^{q / p-1} \alpha^{q / p} \frac{(4 p)^{q / p}}{j^{q / p}} \tag{5}
\end{equation*}
$$

It is easy to see that, for $1 \leq p<q<\infty$,

$$
\sum_{j=1}^{n / 2}\left(\log \frac{e n}{j}\right)^{q / p} \leq A n \min \left\{n q^{q / p},(\log n)^{q / p}\right\}
$$

for some universal A. Thus the sum over the first terms in (5) is smaller than $1 / 4$ if, for some universal $\gamma, t>\gamma \min \left\{q^{1 / p},(\log n)^{1 / p}\right\}$. The second term is bounded by $1 / 4$ if $\alpha<B \frac{1}{p}\left(\frac{q}{p}-1\right)^{p / q}$, for some universal B. Choosing α to satisfy this inequality and using (3), (4), and (5) we get that, for $t>$ $\gamma \min \left\{q^{1 / p},(\log n)^{1 / p}\right\}$,

$$
\mu\left(\|u\|_{L_{q}^{n}}>t\right) \leq \frac{n}{2} e^{-\alpha n^{p / q} q^{p}}
$$

Under the conditions on t, the factor $n / 2$ can be absorbed in the second term (changing α to another constant of the same order of magnitude as a function of p), thus proving (1).

We now turn to the proof of the lower bound (2), which is simpler. Using Lemma 1 again,

$$
\begin{aligned}
\mu\left(\|u\|_{L_{q}^{n}}>t\right) & =P\left(n^{1 / p-1 / q}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} /\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}>t\right) \\
& \geq P\left(x_{1}>S t / n^{1 / p-1 / q}\right) \\
& =P\left(x_{1}>\frac{t}{\left(n^{(1-p / q)}-t^{p}\right)^{1 / p}}\left(\sum_{i=2}^{n} x_{i}^{p}\right)^{1 / p}\right) .
\end{aligned}
$$

Since $t^{p} \leq \frac{1}{2} n^{(1-p / q)}$, this dominates

$$
P\left(x_{1}>\frac{2^{1 / p} t}{n^{1 / p-1 / q}}\left(\sum_{i=2}^{n} x_{i}^{p}\right)^{1 / p}\right)
$$

Now, by Lemma 2.3,

$$
\begin{aligned}
P\left(x_{1}>\frac{2^{1 / p} t}{n^{1 / p-1 / q}}\left(\sum_{i=2}^{n} x_{i}^{p}\right)^{1 / p}\right) & \geq \frac{c_{p}}{2 p} \mathbf{E} \exp \left(-4 t^{p} \sum_{i=2}^{n} x_{i}^{p} / n^{(1-p / q)}\right) \\
& =\frac{c_{p}}{2 p}\left(\mathbf{E} \exp \left(-4 t^{p} x_{1}^{p} / n^{(1-p / q)}\right)\right)^{n-1} \\
& =\frac{c_{p}}{2 p}\left(\frac{1}{1+\frac{4 t^{p}}{n^{1-p / q}}}\right)^{(n-1) / p} \quad(\text { by Lemma 2.2) } \\
& \geq \frac{c_{p}}{2 p} \exp \left(-\frac{4 t^{p}(n-1)}{p n^{(1-p / q)}}\right) \\
& \geq \frac{c_{p}}{2 p} e^{4 t^{p} n^{p / q} / p}
\end{aligned}
$$

Finally observe that, since c_{p} is bounded away from zero and $t \geq 2$, the factor $\frac{c_{p}}{2 p}$ can be absorbed in the second term (changing 4 to another universal constant).

Remarks. 1. It follows from the proof that, for n large enough and q close to p, one can take $c(p, q)=\frac{c}{p}\left(\frac{q}{p}-1\right)$ for some universal constant c.
2. It follows from the statement of the theorem that, for $q=\infty$,

$$
\mu\left(\|u\|_{\infty}>t\right) \leq e^{-\gamma t^{\rho} / p}
$$

for all $t>\tau(\log n)^{1 / p}$, and

$$
\mu\left(\|u\|_{\infty}>t\right) \geq e^{-\Gamma t^{p} / p}
$$

for all $2 \leq t \leq \frac{1}{2} n^{1 / p}$, where γ, Γ, and τ are universal constants.
3. Note that it follows from Lemma 1 and Lemma 2.4 that the order of magnitude of T is the correct one.
4. The restriction $p \geq 1$ in Theorem 3 above and in Corollary 4 below can be replaced by $p>0$ if one replaces the inequality $t \geq 2$ with $t \geq d$, for some d depending only on p and q, and if one removes the "moreover" part. We didn't check the dependence of the constants on p and q in this case.
5. The measure μ and the normalized Lebesgue measure are equivalent with constant at most $n^{1 / 2}$. It follows that a similar statement holds also for the normalized Lebesgue measure on the positive quadrant of the unit sphere of L_{p}^{n}. For $p=1$ and $p=2$ the measures $\bar{\mu}$ and normalized Lebesgue measure on the positive quadrant of the L_{p}^{n} sphere are equal.

Our last remark is that one can get a similar statement for the full balls. We state it as a corollary.

Corollary 4. For all $1 \leq p<q<\infty$, there are constants $c=c(p, q), C=$ $C(p, q)$, and $T=T(p, q)$ such that if ν denotes the normalized Lebesgue measure on the ball of L_{p}^{n}, then for all n large enough,

$$
\begin{equation*}
\nu\left(\|u\|_{L_{q}^{n}}>t\right) \leq \exp \left(-c t^{p} n^{p / q}\right) \tag{6}
\end{equation*}
$$

for all $t>T$, and

$$
\begin{equation*}
\nu\left(\|u\|_{L_{q}^{n}}>t\right) \geq \exp \left(-C t^{p} n^{p / q}\right) \tag{7}
\end{equation*}
$$

for all $2 \leq t \leq \frac{1}{2} n^{1 / p-1 / q}$. Moreover, for $q>2 p$ (or any other universal positive multiple of p), one can take $c(p, q)=\frac{\gamma}{p}, C(p, q)=\frac{\Gamma}{p}$, and $T(p, q)=$ $\tau \min \{q, \log n\}^{1 / p} \leq q^{1 / p}$, where γ, Γ, and τ are universal constants.

The proof follows easily from Theorem 3 and the formula

$$
\nu(A)=n \int_{0}^{1} r^{n-1} \mu\left(\frac{A}{r}\right) d r
$$

which holds for all Borel sets A in the ball of L_{p}^{n}.

References

[MS] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math., vol. 1200, Springer-Verlag, New York, 1986.

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot, IsRaEl

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

[^0]: Received by the editors September 14, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 52A20; Secondary 60E15.
 The work of the first author was partly supported by the US-Israel BSF and by the Glikson Foundation.

 The work of the second author was partly supported by NSF DMS-86-01250 and by the Texas Advanced Research Program, Grant no. 3825.

