ON THE VOLUME OF THE INTERSECTION OF TWO L_n^n BALLS

G. SCHECHTMAN AND J. ZINN

(Communicated by William J. Davis)

ABSTRACT. In this note we prove that the proportion of the volume left in the L_p^n ball after removing a t-multiple of the L_q^n ball is of order $e^{-ct^p n^{p/q}}$.

1. Introduction

This note deals with the following problem, the case p=1, q=2 of which was raised by Vitali Milman: What is the volume left in the L_p^n ball after removing a t-multiple of the L_q^n ball? Recall that the L_r^n ball is the set $\{(t_1,t_2,\ldots,t_n)\,;\,t_i\in\mathbf{R},\,n^{-1}\sum_{i=1}^n|t_i|^r\leq 1\}$ and note that for $0< p< q<\infty$ the L_q^n ball is contained in the L_p^n ball.

In Corollary 4 below, we show that after normalizing Lebesgue measure so that the volume of the L_p^n ball is one, the answer to the problem above is of order $e^{-ct^p n^{p/q}}$ for $T < t < \frac{1}{2} n^{1/p-1/q}$, where c and T depend on p and q but not on n.

The main theorem, Theorem 3, deals with the corresponding question for a certain measure on the L_p^n sphere. Theorem 3 and Corollary 4, together with some other remarks, form $\S 3$. In $\S 2$ we introduce a class of random variables to be used in proving the main theorem. These random variables are related to L_p in the same way that Gaussian variables are related to L_2 .

2. Preliminaries

Here we introduce a class of random variables to be used in the proof of the main theorem, and we summarize some of their properties. Fix a 0 and let <math>x, x_1 , x_2 , ..., x_n be independent random variables each with density function $c_p e^{-t^p}$, t > 0. Note that necessarily $c_p = p/\Gamma(1/p)$. Let Δ_p denote

Received by the editors September 14, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 52A20; Secondary 60E15.

The work of the first author was partly supported by the US-Israel BSF and by the Glikson Foundation.

The work of the second author was partly supported by NSF DMS-86-01250 and by the Texas Advanced Research Program, Grant no. 3825.

the positive quadrant of the sphere of l_p^n , i.e.,

$$\Delta_{p} = \left\{ \left(t_{1}\,,\,t_{2}\,,\,\ldots\,,\,t_{n}\right);\,t_{i} \geq 0\,,\,\left\|t\right\|_{p}^{p} =: \sum t_{i}^{p} = 1 \right\}\,,$$

and for, λ , Lebesgue measure on \mathbb{R}^n , let $\overline{\mu}$ be the Borel probability on Δ_p given by

$$\overline{\mu}(A) = \frac{\lambda(\{t \in \mathbf{R}_{+}^{n} \colon \frac{t}{\|t\|_{p}} \in A, \quad \|t\|_{p} \le 1\})}{\lambda(\{t \in \mathbf{R}_{+}^{n} \colon \|t\|_{p} \le 1\})}.$$

Notice that for all $\varepsilon > 0$,

$$\overline{\mu}(A) = \frac{\lambda(\{(t_1, \ldots, t_n) \in \mathbf{R}_+ \cdot A \colon a - \varepsilon < \|t\|_p \le a + \varepsilon\})}{\lambda(\{(t_1, \ldots, t_n) \in \mathbf{R}_+^n \colon a - \varepsilon < \|t\|_p \le a + \varepsilon\})}.$$

Note that for p=1 and p=2 $\overline{\mu}$ is the normalized surface measure on Δ_p , and that for all p,

$$\overline{\nu}(A) = n \int_0^1 r^{n-1} \overline{\mu} \left(\frac{A}{r} \right) dr$$

where $\overline{\nu}$ denotes the normalized Lebesgue measure on the positive quadrant of the l_n^n ball. The first claim is known, though we could not locate a reference.

Lemma 1. Put $S = (\sum_{i=1}^n x_i^p)^{1/p}$; then $(\frac{x_1}{S}, \frac{x_2}{S}, \dots, \frac{x_n}{S})$ induces the measure $\overline{\mu}$ over the positive quadrant of the sphere of l_p^n . Moreover, $(\frac{x_1}{S}, \frac{x_2}{S}, \dots, \frac{x_n}{S})$ is independent of S.

Proof. For any Borel subset A of Δ_p ,

Similarly,

$$P\left(\left(\frac{x_1}{S}, \frac{x_2}{S}, \dots, \frac{x_n}{S}\right) \in A | S = a\right) \ge \overline{\mu}(A).$$

This proves that $P((\frac{x_1}{S}, \frac{x_2}{S}, \dots, \frac{x_n}{S}) \in A) = \overline{\mu}(A)$ and that $(\frac{x_1}{S}, \frac{x_2}{S}, \dots, \frac{x_n}{S})$ is independent of S. \square

In the next claim we gather some more properties of the random variables x_i .

Lemma 2. Let x, x_1, \ldots, x_n be as above; then

- 1. c_p is bounded away from zero and infinity when $p \to \infty$.
- 2. For all h > 0 and all $0 , <math>\mathbf{E}e^{-hx^p} = (\frac{1}{1+h})^{1/p}$. In particular, $\mathbf{E}e^{-hx^p} \ge e^{-h/p}$ for all h > 0 and $\mathbf{E}e^{-hx^p} \le e^{-h/2p}$ for all $0 < h \le 1$.
- 3. For all $0 < u < \infty$ and all $0 , <math>P(x^p > u) \ge \frac{c_p}{2p}e^{-2u}$. If $p \ge 1$ and $u \ge 1$, then also $P(x^p > u) \le \frac{c_p}{p}e^{-u/2}$. In particular, for $p \ge 1$ and all u, $P(x^p > u) \le Ce^{-u/2}$ for some universal C.
- 4. For all $1 \le p \le q < \infty$, if n is large enough, then $\mathbb{E}(\sum_{i=1}^n x_i^q)^{1/q}$ is equivalent, with universal constants, to $q^{1/p} n^{1/p}$, if $q \le \log n$, and to $(\log n)^{1/p}$, otherwise.

Proof.

- (1) follows easily from the fact that $c_p = p/\Gamma(1/p) = \Gamma(\frac{1}{p} + 1)^{-1}$.
- (2) is a simple computation.
- (3) is also simple; here is a sketch of the proof.

$$P(x^{p} > u) = c_{p} \int_{u^{1/p}}^{\infty} e^{-t^{p}} dt$$

$$\geq c_{p} \int_{u^{1/p}}^{(u+1)^{1/p}} \frac{pt^{(p-1)}}{p(u+1)^{(p-1)/p}} e^{-t^{p}} dt$$

$$= \frac{c_{p}}{p(u+1)^{(p-1)/p}} \left(1 - \frac{1}{e}\right) e^{-u}$$

$$\geq \frac{c_{p}}{2p(u+1)} e^{-u}$$

$$\geq \frac{c_{p}}{2p} e^{-2u}.$$

The other inequality in (3) is proved in a similar way.

(4) First note that for all 0 < p, $q < \infty$

$$\mathbf{E}x^{q} = c_{p} \int_{0}^{\infty} t^{q} e^{-t^{p}} dt = \frac{c_{p}}{p} \Gamma\left(\frac{q+1}{p}\right);$$

so that, by Holder's inequality and 1 above, if $1 \le p \le q < \infty$,

$$\mathbb{E}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1/q} \leq \left(\sum_{i=1}^{n} \mathbb{E} x_{i}^{q}\right)^{1/q} = \left(\frac{c_{p}}{p} \Gamma\left(\frac{q+1}{p}\right)\right)^{1/q} n^{1/q} \leq Cq^{1/p} n^{1/q}$$

for some universal C. For the lower bound, note first that, by (3) above,

$$P\left(\max_{1\leq i\leq n}x_i>t\right)\geq 1-\left(1-\frac{c_p}{2p}e^{-2t^p}\right)^n.$$

For $n \ge 20p/c_p$, choose $t = 2^{1/p} (\log \frac{nc_p}{2p})^{1/p}$ to get that, for some universal c,

$$P\left(\max_{1\leq i\leq n} x_i > c(\log n)^{1/p}\right) \geq 1/2.$$

In particular, $\mathbb{E} \max_{1 \le i \le n} x_i \ge c(\log n)^{1/p}$. This already implies the claim if $q > \log n$, since in this case $(\sum_{i=1}^n x_i^q)^{1/q}$ is universally equivalent to $\max_{1 \le i \le n} x_i$. If $q \le \log n$, divide $\{1, 2, ..., n\}$ into approximately n/e^q disjoint sets of cardinality approximately e^q each; then

$$\mathbf{E}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1/q} = \mathbf{E}\left(\sum_{j} \left(\sum_{i \in \sigma_{j}} x_{i}^{q}\right)^{q/q}\right)^{1/q}$$

$$\geq \mathbf{E}\left(\sum_{j} \left(\max_{i \in \sigma_{j}} x_{i}\right)^{q}\right)^{1/q}$$

$$\geq \left(\sum_{j} \left(\mathbf{E}\max_{i \in \sigma_{j}} x_{i}\right)^{q}\right)^{1/q}$$

$$\geq c'(\log e^{q})^{1/p} (n/e^{q})^{1/q}$$

$$\geq c'' q^{1/p} n^{1/q}. \quad \Box$$

The statement in Lemma 2.4, for the case p=2, was noticed by the first-named author several years ago while seeking a precise estimate for the dimension of the Euclidean sections of l_p^n spaces (see [MS] p. 145, Remark 4.5). The original proof was more complicated. The proof presented here is an adaptation of a proof of the case p=2 shown to us by J. Bourgain.

3. The main result

Theorem 3. For all $1 \le p < q < \infty$ there are constants c = c(p, q), C = C(p, q), and T = T(p, q) such that if μ denotes the probability measure on the positive quadrant of the unit sphere of L_n^n given by $\mu(A) = \overline{\mu}(n^{1/p}A)$, then

(1)
$$\mu(\|u\|_{L^n_a} > t) \le \exp(-ct^p n^{p/q})$$

for all t > T, and

(2)
$$\mu(\|u\|_{L_q^n} > t) \ge \exp(-Ct^p n^{p/q})$$

for all $2 \le t \le \frac{1}{2} n^{1/p - 1/q}$.

Moreover, for q > 2p (or any other universal positive multiple of p), one can take $c(p, q) = \frac{\gamma}{p}$, $C(p, q) = \frac{\Gamma}{p}$, and $T(p, q) = \tau \min\{q, \log n\}^{1/p} \le q^{1/p}$. Here γ , Γ , and τ are universal constants.

Proof. By Lemma 1 above,

$$\mu(\|u\|_{L^n_q} > t) = P\left(n^{1/p - 1/q} \left(\sum_{i=1}^n x_i^q\right)^{1/q} \middle/ \left(\sum_{i=1}^n x_i^p\right)^{1/p} > t\right) ,$$

where x_i are independent random variables each with density $c_n e^{-t^p}$. Assume, for the simplicity of the presentation, that n is even. Put $S = (\sum_{i=1}^{n} x_i^p)^{1/p}$ and let p_i , j = 1, 2, ..., n/2, be positive numbers with sum $\leq 1/2$. Then

$$P\left(n^{1/p-1/q}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1/q} / \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p} > t\right)$$

$$= P\left(\sum_{i=1}^{n} x_{i}^{q} > \frac{t^{q}\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{q/p}}{n^{q/p-1}}\right)$$

$$\leq \sum_{i=1}^{n/2} P(x_{i}^{*} > tp_{i}^{1/q}S/n^{1/p-1/q}) + P\left(\sum_{i=n/2+1}^{n} x_{i}^{*q} > t^{q}S^{q}/2n^{q/p-1}\right),$$

where $\{x_i^*\}$ denotes the nonincreasing rearrangement of $\{|x_i|\}$. Since

$$\sum_{j=n/2+1}^{n} x_{i}^{*q} \leq \frac{n}{2} x_{n/2}^{*q} \leq \frac{n}{2} \left(\frac{2}{n} \sum_{i=1}^{n/2} x_{i}^{*p} \right)^{q/p}$$
$$\leq 2^{q/p-1} S^{q} / n^{q/p-1},$$

we get that, if $t \ge 2^{1/p}$, the second term in (3) is zero. To evaluate the first term in (3), fix $1 \le j \le n/2$. Then,

$$P(x_{j}^{*} > tp_{j}^{1/q} S/n^{1/p-1/q}) \leq {n \choose j} P(x_{1}, \dots, x_{j} > tp_{j}^{1/q} S/n^{1/p-1/q})$$

$$\leq {n \choose j} P\left(x_{1}^{p}, \dots, x_{j}^{p} > t^{p} p_{j}^{p/q} \sum_{i=j+1}^{n} x_{i}^{p}/n^{1-p/q}\right).$$

From Lemma 2.3 and 2.2 we get that the last expression is dominated by

$$\binom{n}{j} C^{j} \mathbf{E} \exp \left(-j p_{j}^{p/q} t^{p} \sum_{i=j+1}^{n} x_{i}^{p} / n^{1-p/q} \right)$$

$$\leq \binom{n}{j} C^{j} \exp(-j p_{j}^{p/q} t^{p} (n-j) / 2p n^{1-p/q})$$

for some universal C. Note that the last inequality holds if $jn^{p/q-1}p_j^{p/q}t^p \leq 1$. If this is not the case, the probability we are trying to evaluate is zero. Finally, the last term is dominated by

(4)
$$\exp\left(j\left(\log\frac{en}{j} + C - \frac{p_j^{p/q}t^pn^{p/q}}{4p}\right)\right).$$

Now, for α to be chosen momentarily, let p_j , $j = 1, \ldots, n/2$, be such that

$$j\left(\log\frac{en}{j}+C-\frac{p_j^{p/q}t^pn^{p/q}}{4p}\right)=-\alpha n^{p/q}t^p,$$

that is,

$$p_{j} = \left(4p \frac{\log \frac{en}{j}}{t^{p} n^{p/q}} + \frac{4Cp}{t^{p} n^{p/q}} + \alpha \frac{4p}{j}\right)^{q/p}.$$

We thus get that, for some universal constant C,

(5)
$$p_{j} \leq 2^{q/p-1} \frac{(Cp)^{q/p} (\log \frac{en}{j})^{q/p}}{t^{q} n} + 2^{q/p-1} \alpha^{q/p} \frac{(4p)^{q/p}}{i^{q/p}} .$$

It is easy to see that, for $1 \le p < q < \infty$,

$$\sum_{i=1}^{n/2} \left(\log \frac{en}{j} \right)^{q/p} \le An \min \{ nq^{q/p}, (\log n)^{q/p} \}$$

for some universal A. Thus the sum over the first terms in (5) is smaller than 1/4 if, for some universal γ , $t > \gamma \min\{q^{1/p}, (\log n)^{1/p}\}$. The second term is bounded by 1/4 if $\alpha < B\frac{1}{p}(\frac{q}{p}-1)^{p/q}$, for some universal B. Choosing α to satisfy this inequality and using (3), (4), and (5) we get that, for $t > \gamma \min\{q^{1/p}, (\log n)^{1/p}\}$,

$$\mu(\|u\|_{L_q^n} > t) \le \frac{n}{2}e^{-\alpha n^{p/q}t^p}.$$

Under the conditions on t, the factor n/2 can be absorbed in the second term (changing α to another constant of the same order of magnitude as a function of p), thus proving (1).

We now turn to the proof of the lower bound (2), which is simpler. Using Lemma 1 again,

$$\begin{split} \mu(\|u\|_{L_q^n} > t) &= P\left(n^{1/p - 1/q} \left(\sum_{i=1}^n x_i^q\right)^{1/q} \middle/ \left(\sum_{i=1}^n x_i^p\right)^{1/p} > t\right) \\ &\geq P(x_1 > St/n^{1/p - 1/q}) \\ &= P\left(x_1 > \frac{t}{(n^{(1-p/q)} - t^p)^{1/p}} \left(\sum_{i=2}^n x_i^p\right)^{1/p}\right). \end{split}$$

Since $t^p \le \frac{1}{2}n^{(1-p/q)}$, this dominates

$$P\left(x_1 > \frac{2^{1/p}t}{n^{1/p-1/q}} \left(\sum_{i=2}^n x_i^p\right)^{1/p}\right) \, .$$

Now, by Lemma 2.3,

$$\begin{split} P\left(x_{1} > \frac{2^{1/p}t}{n^{1/p-1/q}} \left(\sum_{i=2}^{n} x_{i}^{p}\right)^{1/p}\right) & \geq \frac{c_{p}}{2p} \mathbb{E} \exp\left(-4t^{p} \sum_{i=2}^{n} x_{i}^{p}/n^{(1-p/q)}\right) \\ & = \frac{c_{p}}{2p} (\mathbb{E} \exp(-4t^{p} x_{1}^{p}/n^{(1-p/q)}))^{n-1} \\ & = \frac{c_{p}}{2p} \left(\frac{1}{1 + \frac{4t^{p}}{n^{1-p/q}}}\right)^{(n-1)/p} \quad \text{(by Lemma 2.2)} \\ & \geq \frac{c_{p}}{2p} \exp\left(-\frac{4t^{p}(n-1)}{pn^{(1-p/q)}}\right) \\ & \geq \frac{c_{p}}{2p} e^{4t^{p}n^{p/q}/p} \,. \end{split}$$

Finally observe that, since c_p is bounded away from zero and $t \geq 2$, the factor $\frac{c_p}{2p}$ can be absorbed in the second term (changing 4 to another universal constant). \Box

Remarks. 1. It follows from the proof that, for n large enough and q close to p, one can take $c(p,q) = \frac{c}{p}(\frac{q}{p}-1)$ for some universal constant c.

2. It follows from the statement of the theorem that, for $q = \infty$,

$$\mu(\|u\|_{\infty} > t) \le e^{-\gamma t^p/p}$$

for all $t > \tau (\log n)^{1/p}$, and

$$\mu(\|u\|_{\infty} > t) \ge e^{-\Gamma t^p/p}$$

for all $2 \le t \le \frac{1}{2} n^{1/p}$, where γ , Γ , and τ are universal constants.

- 3. Note that it follows from Lemma 1 and Lemma 2.4 that the order of magnitude of T is the correct one.
- 4. The restriction $p \ge 1$ in Theorem 3 above and in Corollary 4 below can be replaced by p > 0 if one replaces the inequality $t \ge 2$ with $t \ge d$, for some d depending only on p and q, and if one removes the "moreover" part. We didn't check the dependence of the constants on p and q in this case.
- 5. The measure μ and the normalized Lebesgue measure are equivalent with constant at most $n^{1/2}$. It follows that a similar statement holds also for the normalized Lebesgue measure on the positive quadrant of the unit sphere of L_p^n . For p=1 and p=2 the measures $\overline{\mu}$ and normalized Lebesgue measure on the positive quadrant of the L_p^n sphere are equal.

Our last remark is that one can get a similar statement for the full balls. We state it as a corollary.

Corollary 4. For all $1 \le p < q < \infty$, there are constants c = c(p,q), C = C(p,q), and T = T(p,q) such that if ν denotes the normalized Lebesgue measure on the ball of L_p^n , then for all n large enough,

(6)
$$\nu(\|u\|_{L_a^n} > t) \le \exp(-ct^p n^{p/q})$$

for all t > T, and

(7)
$$\nu(\|u\|_{L_q^n} > t) \ge \exp(-Ct^p n^{p/q})$$

for all $2 \le t \le \frac{1}{2}n^{1/p-1/q}$. Moreover, for q > 2p (or any other universal positive multiple of p), one can take $c(p,q) = \frac{\gamma}{p}$, $C(p,q) = \frac{\Gamma}{p}$, and $T(p,q) = \tau \min\{q, \log n\}^{1/p} \le q^{1/p}$, where γ, Γ , and τ are universal constants.

The proof follows easily from Theorem 3 and the formula

$$\nu(A) = n \int_0^1 r^{n-1} \mu\left(\frac{A}{r}\right) dr,$$

which holds for all Borel sets A in the ball of L_n^n .

REFERENCES

[MS] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math., vol. 1200, Springer-Verlag, New York, 1986.

DEPARTMENT OF THEORETICAL MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, RE-

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843