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THE STABILITY OF THE SINE

AND COSINE FUNCTIONAL EQUATIONS

LÁSZLÓ SZÉKELYHIDI

(Communicated by Kenneth R. Meyer)

Abstract. In this work the stability of the functional equations describing the

addition theorems for sine and cosine is proved.

1. Introduction

The aim of this paper is to study the stability properties of two well known

functional equations: the sine and cosine equations: Stability problems con-

cerning classical functional equations have been treated by several authors (see

e.g. [1, 2, 3, 4, 5]). Here we use some results of [3, 4].

If G is a semigroup and K is a field, then functions a, m : G —> K satisfying

the functional equation

a(xy) =a(x) + a(y)

resp.

m(xy) = m(x)m(y)

will be called additive, resp. exponential.

In this work K denotes either the real or the complex field. We remark that

all the lemmata are valid for arbitrary field K.

If G is a semigroup, K is a field, and ff is a linear space of K-valued

functions on G, then we say that the functions /, g: G —► K are linearly

independent modulo 9" if Xf + pg e SF implies X = p = 0 for any X, p in

K. We say that the linear space SF is two-sided invariant if / e SF implies

that the functions x -* f(xy) and x —> f(yx) belong to & for any y in G.

2. Stability of the sine equation

Lemma 2.1. Let G be a semigroup, f, g: G —> K be functions, and f be a

two-sided invariant linear space of K-valued functions on G. Suppose that f

and g are linearly independent modulo if. If the function

_ x ^ f(xy) - f(x)g(y) - f(y)g(x)
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belongs to f for all y in G, then

f(xy) = f(x)g(y) + f(y)g(x)

holds for all x, y in G.

Proof. We define

F(x, y) = f(xy) - f(x)g(y) - f(y)g(x)

for x, y in G ; then there are constants X0, Xx, X2 and yx e G with

g(x) = X0f(x) + Xxf(xyx)+X2F(x,yx)

for all x in G. Now we have for all x, y, z in G

f[(xy)z] = f(xy)g(z) + f(z)g(xy) + F(xy , z)

- f(x)g(y)g(z) + g(x)f(y)g(z)

+ F(x, y)g(z) + X0f(xy)f(z) + Xxf(xyyx)f(z)

+ X2F(xy,yx)f(z) + F(xy, z)

= f(x)g(y)g(z) + g(x)f(y)g(z) + F(x, y)g(z)

+ X0f(x)g(y)f(z) + X0g(x)f(y)f(z) + XQF(x, y)f(z)

+ Xxf(x)g(yyx)f(z) + Xxg(x)f(yyx)f(z)+XxF(x,yyx)f(z)

+ X2F(xy, yx)f(z) + F(xy, z).

On the other hand,

f[(xy)z] = f[x(yz)] = f(x)g(yz) + g(x)f(yz) + F(x, yz).

It follows that

f(x)[g(y)g(z) + X0g(y)f(z) + Xxg(yyx)f(z) - g(yz)]

+ g(x)[f(y)g(z) + X0f(y)f(z) + Xxf(yyx)f(z) - f(yz)\

= Fix, yz) - F(xy, z) - F(x, y)g(z) - X0F(x, y)f(z)

-XxF(x,yyx)f(z) -X2F(xy ,yx)f(z).

Using the linear independence of / and g modulo f and also the fact

that f is a two-sided invariant linear space, we have

g{y)g{z) + [X0g(y) + Xxg(yyx)]f(z) = g(yz)

fiy)g{2) + [X0f(y) + Xxf(yyx)]f(z) = f(yz)

for all y, z in G. The second equation can be rewritten as

f{y)g{z) + [g(y) - ¿2F(y - *)!/(*) = fto*)

and, on the other hand, we have

f(y)g(z) + g(y)f(z) + F(y, z) = f(yz).

This implies

F(y,z) = ~X2F(y,yx)f(z)
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for all y, z in G. Further, with notation

y/(x) = XQg(x)+Xxg(xyx)

we have the following

f[(xy)z] = f(xy)g(z) + f(z)[g(xy) - X2F(xy, yx )]

= f(x)g(y)g(z) + f(y)[g(x) - X2F(x, yx)]g(z)

+ g(x)g(y)f(z) + y/(x)f(y)f(z) - X2F(xy, yx)f(z)

= f(x)g(y)g(z) + g(x)f(y)g(z) + g(x)g(y)f(z)

+ V(x)f(y)f(z) - X2F(x, yx )f(y)g(z) - X2F(xy, y, )f(z).

On the other hand

f[(xy)z] = f[x(yz)] = f(x)g(yz) + g(x)f(yz) + F(x, yz),

and hence the above chain of equalities can be continued as

f[(xy)z] = f[x(yz)] = f(x)g(yz) + [g(x) - X2F(x, yx )]f(yz)

= f(x)g(y)g(z) + f(x)y/(y)f(z) + g(x)f(y)g(z) + g(x)

x [g(y) - X2F(y, yx)]f(z) - X2F(x, yx)f(y)g(z)

-X2F(x,yx([g(y)-X2F(y,yx)]f(z)

= f(x)g(y)g(z) + g(x)f(y)g(z) + g(x)g(y)f(z) + f(x)y/(y)f(z)

- X2F(y, yx )g(x)f(z) - X2F(x, yx )f(y)g(z)

-X2F(x,yx)g(y)f(z) + X22F(x,yx)F(y,yx)f(z).

As / / 0, we can divide by f(z) to obtain

¥(x)f(y)-X2F(xy,yx)

= f(x)yy(y) - X2F(y, yx)g(x) - X2F(x, yx)g(y) + x\F(x, yx)F(y ,yx).

Interchanging x and y, we have

y/(y)f(x)-X2F(yx,yx)

= f(y)y/(x) - X2F(x, y,)g(y) - X2F(y, yx)g(x) + x\F(y, yx)F(x ,yx).

By adding the two equations, we obtain

-X2[F(xy,yx) + F(yx,yx)]

= -2X2F(y, yx )g(x) - 2X2F(x, yx )g(y) + 2X\F(x, yx )F(y ,yx).

As g is not in y, it follows that X2F(y, yx ) = 0 ; hence, F = 0.

Lemma 2.2. Let G be a semigroup, f, g: G —> K functions and let SP be a

two-sided invariant linear space of K-valued functions on G. If the function

x - f(xy) - f(x)g(y) - f(y)g(x)

belongs to & for all y in G, then we have the following possibilities:

(i) / = 0, g is arbitrary;
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(ii) f,geSf;
(iii) g 6 y is an exponential;

(iv) f = Xm - Xb,  g = \m + \b, where m: G —> K is an exponential,

b: G —rK is in f and XeK is a constant;

(v) f(xy) = f(x)g(y)+f(y)g(x) for ail x,y in G.

Proof. If / and g are linearly independent modulo ¡f, then (v) follows from

Lemma 2.1.

Now we suppose that there are constants p, v in K (at least one of them

different from zero) such that pf + vg e f but /, g £ &~. Then we have

g = 4jf + b with b e ¡f and X^O, hence the function

x -> f(xy) xf(y) + b(y)f(x)

belongs to & for all y in G. From the results of [3] it follows that

jf(y) + b(y) = m(y)

where m: G —► K is an exponential, which implies (iv).

If g e & and / £ &, then

x -» f(xy) - f(x)g(y)

belongs to 3? for all y in G, and it follows from [3] that (iii) holds.

If / e y and / ¿ 0, then ge,f .

If / = 0, then g is arbitrary.

Theorem 2.3. Let G be an amenable group and let f, g: G —> K be given

functions. The function

(x,y)^ f(xy) - f(x)g(y) - f(y)g(x)

is bounded if and only if we have one of the following conditions:

(i) /=0, g is arbitrary;

(ii) /, g, are bounded;

(iii) / = azrz + b,  g - m, where a: G —► K is additive,  m: G —> K is a

bounded exponential and b: G —► K is a bounded function;

(iv) / = Xm - Xb,  g - \m + ¿b, where m: G —► K is an exponential,

b: G —► K is a bounded function, and XeK is a constant;

(v) f(xy) = f(x)g(y) + f(y)g(x),forallx,y in G.

Proof. Applying Lemma 2.2 with f denoting the set of all bounded K-valued

functions on G we see that either one of the above conditions (i), (ii), (iv), (v)

is fulfilled, or g = m is a bounded exponential. In the latter case the function

(x,y)-* f(xy)m((xy)~[) -f(x)m(x~l) - f(y)m(y~l)

is bounded, hence by Hyers's theorem [4]

f(x)m(x    ) - a(x) + bJx)
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holds for all x in G where a : G —> K is additive and b0 : G —► K is bounded,

and our statement follows. (We have excluded the trivial case m = 0, and we

have used the obvious identity m(x)m(x~ ) = 1 , which holds for any nonzero

exponential.)

The sufficiency follows by direct calculation.

3. Stability of the cosine equation

Lemma 3.1. Let G be a semigroup, f, g: G —► K be functions, and ^ be a

two-sided invariant linear space of K-valued functions on G. Suppose that f

and g are linearly independent modulo &. If the functions

x - f(xy) - f(x)f(y) + g(x)g(y)

and

x — f(xy) - f(yx)

belong to ¡f for all y in G, then

f(xy) = f(x)f(y) - g(x)g(y)

holds for all x, y in G.

Proof. We define

F(x, y) = f(xy) - f(x)f(y) + g(x)g(y)

for x, y in G ; then there are constants X0, Xx, X2 and yx e G with

g(x) = X0f(x) + Xxf(xyx) + X2F(x, yx )

for all x in G. Now we have, for all x, y, z in G,

f[(xy)z] = f(xy)f(z) - g(z)g(xy) + F(xy, z)

= f{x)f(y)f(z) - g(x)g(y)f(z) + F(x, y)f(z)

- X0f(xy)g(z) - Xxf(xyyx)g(z) - X2F(xy, yx )g(z) + F(xy, z)

= f(x)f(y)f(z) - g(x)g(y)f(z) + F(x, y)f(z)

- X0f(x)f(y)g(z) + X0g(x)g(y)g(z) - X0F(x, y)g(z)

- Xxf(x)f(yyx)g(z) + Xxg(x)g(yyx)g(z) - XxF(x, yyx)g(z)

- X2F(xy, yx )g(z) + F(xy, z).

On the other hand, as above,

f[(xy)z] = f[x(yz)} = f(x)f(yz) - g(x)g(yz) + F(x, yz),

and it follows that

f(x)[f(y)f(z)-X0f(y)g(z)-Xxf(yyx)g(z)-f(yz)]

- g(x)[g(y)f(z) - X0g(y)g(z) - Xxg(yyx)g(z) - g(yz)]

= F(x, yz) - F(xy, z) - F(x, y)f(z) + XQF(x, y)g(z)

+ XxF(x, yyx)g(z) + X2F(xy, yx)g(z).
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Using the linear independence of / and g modulo SF, we have

F(x, yz) - F(xy, z) = F(x, y)f(z) - XQF(x, y)g(z)

- XxF(x, yyx)g(z) - X2F(xy, yx)g(z).

By the assumptions of the lemma, it follows that the left-hand side belongs to f

as a function of z for all fixed x, y in G. Again using the linear independence

of / and g modulo f and the fact that 9~ is a two-sided invariant linear

space, we have F(x, y) = 0 for all x, y in G ; hence, the lemma is proved.

Lemma 3.2. Let G be a semigroup, f, g: G —► K functions and let f be a

two-sided invariant linear space of K-valued functions on G. If the functions

x - f(xy) - f(x)f(y) + g(x)g(y)

and

x -> f(xy) - f(yx)

belong to f for all y in G, then we have the following possibilities:

(i) f,ge^;
(ii) / is an exponential, g e ¿f ;

(iii) f + g or f - g is an exponential in f ;

(iv) f = -j—-m - -r—b,  g = TT^m + -rr^-rb, where m: G —► K is an
À  — 1 A  — 1 A  — 1 A  — 1

exponential, b: G —► K is in ¡f, and XeK is a constant with X  ^ 1 ;

(v) f(xy) = f(x)f(y) - g(x)g(y).

Proof. If / and g are linearly independent modulo ¡f, then (v) follows from

Lemma 3.1.

If g e 9~, then (i) or (ii) follows from [3].

If f ef, then g ef, hence (i) follows.

Now we suppose that / are g are linearly dependent modulo y, but

/, g <£ ¿F . Then there exists a constant X / 0 with / = Xg + b and b e SF ;

hence, by our assumption, the function

x - g(xy) - \[(X2 - \)g(y)+Xb(y)]g(x)

belongs to f. By [3], we have that

—-—g + b = m
A

1 2
is an exponential, which gives (iii) for A =1 and (iv) for A ^ 1 . The lemma

is proved.

Theorem 3.3. Let G be an amenable group and let f, g: G —» K be given

functions. The function

(x,y)-+ f(xy) - f{x)fly) + g(x)g(y)

is bounded if and only if we have one of the following possibilities:

(i) f, g, are bounded;
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(ii) / is an exponential, g is bounded;

(iii)   / = (1 + a)m + b, g — am + b or f = am + b, g - (I - a)m - b,

where a : G -* K is additive, m : G —> K is a bounded exponential, and

è:G-»K is a bounded function;

(iv) / = tt^-zzz - -r—b,   g = -2^-m + -7T-;b, where m: G —» K is an
À  — 1 A — 1 A  — 1 a  — 1

exponential, b: G —► K is a bounded function, and XeK is a constant

with X  ^ 1 ;

(v) f(xy) = f(x)f(y) - g(x)g(y) for all x, y in G.

Proof. Again we let y be the set of all bounded K-valued functions on G,

and we apply Lemma 3.2. First we prove the necessity. If g is bounded, then

we have (i) or (ii) by [3]. If /+ g or f — g is a bounded exponential, which

corresponds to (iii) of Lemma 3.2, then we have (iii) by using Hyers's theorem

as in Theorem 2.3. Finally, the rest follows directly by Lemma 3.2.

The sufficiency follows by direct calculation.

4. Remark

The above results show that both the sine and cosine equations have the

remarkable stability property that the difference between the two sides of the

equation remains bounded if and only if some bounded functions are added to

the exact solutions.
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