
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 110, Number 1, September 1990

ON LINEAR GROUPS OVER FINITE FIELDS

JI PING ZHANG

(Communicated by Warren J. Wong)

Abstract. Let   G   be a finite group with an Abelian Sylow  p-subgroup   P

(p > 5), and F , a finite field of characteristic p . Set H — Cf (G). If
G has a faithful FG-module M such that dimF M < p - 2 , then one of the

following is true:

(a) P is normal in G ,

(b) H/Z(H) ss ®i<lL2(p"i) , where nt and t are positive integers and 2Z <

P-2,
(c) p = 7 or 11 and H sa 2.A7 or Jx , respectively, dimF M > p - 4 .

In 1963, R. Brauer raised forty-three important problems on group and rep-

resentation theories [2]. The fortieth problem is as follows:

Brauer Problem 40. Determine the linear groups G of small degrees over a

finite field 7.

Let 7 be a Sylow p-subgroup of G, where p is the characteristic of 7.

About 25 years ago, Feit began the study of this problem for \P\ = p [5],

[6]. His results generalized theorems of Brauer [1] and Tuan [4] on ordinary

representation. Recently, Blau [11] gave very nice results on the problem when

7 is cyclic. Since SL(2, p") has all d with 2 < d < p - 1 as the dimension

of an irreducible representation over a suitably large finite field of characteristic

p, it is in general rather difficult to determine the group structure of a linear

group over a finite field. In the present paper, under the assumption that 7

is Abelian, we will characterize the linear groups of degree less than p - 2 in

terms of group theoretical properties. Our results extend the main theorem of

Ferguson [10].

All groups in this paper are assumed to be finite, and the notation and ter-

minology are standard and follow that of [7] and [14].

Linear groups of degree at most 4 have been determined [2], [ 15]. Therefore

we will assume in the following that p is greater than 5.

Lemma 1. Let G be a finite simple group of Lie type. If the characteristic of

G is p with p > 5, and the Sylow p-subgroup of G is Abelian, then G is

isomorphic to L2(p") forsome integer zz > 1.
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Proof. It is an easy consequence of the Chevalley commutator identities.

Lemma 2. Suppose G is a finite p-nilpotent group and V is a faithful FG-

module, where F is a finite field of characteristic p . Let P be a Sylow p-

subgroup of G. If dimF V < p — 1, then 7 is normal in G.

Proof. If the lemma is not true, let (G, V) be a counterexample such that

\G\ + dimf V is minimal. Since 7 is not normal in G, we can choose an

element y e 7 \ Op(G) such that / € Op(G) and YOp(G) is normal in 7,

where Y — (y). Set 7 = YO >(G). If 7 is a proper subgroup of G, then

(7, V\T) satisfies the condition of the lemma. By the minimum of (G, V), Y

is normal in 7. It follows that Y O'(G) is normal in PO''(G) = G, contrary

to the choice of y . So T = G. Let Vx, V2, ... ,Vs be all composite factors

of V and N¡ be the kernel Ker V¡ of ^ . Then the intersection f|» ^ *s a

subgroup of 0_(G). If s > 1, by the minimum of (G, V), YNi is normal in

G. [y, Op,(G)] < A,., so [y, Op,(G)] < f]¡Ni < Op(G). Therefore the Sylow

/z-subgroup of G is a normal subgroup, contrary to the assumption on G. So

V is irreducible,  O (G) = 1, and 7 is of order p.  Since dimf V < p — 1

and y - 1 e /(FF), the radical of FP, V(y - l)p~2 = 0. By Hall-Higman

Theorem B, 0 (G) # 1, a contradiction. The contradiction proves the lemma.

Theorem 3. 7e?; G <V a finite group with an Abelian Sylow p-subgroup P  (p >

5) and F an arbitrary finite field of characteristic p. Set H = (f (G). If

G has a faithful FG-module M such that dimF M < p - 2, then one of the
following must hold:

(a) 7 is normal in G,

(b) H/Z(H) fv ®i<tL2(p"<), where n¡  and t are positive integers,  2t <

p - 2, and Z(H) is the center of 77,

(c) p — 1 or 11 and H « 2.A1 or 7,, respectively, dimf M > p - 4.

Proof. Suppose the theorem is not true, and let G be a counterexample of

minimal order. Then

1. PO,(G) is /z-closed; i.e, 7 is normal in PO,(G).

7 is normal in PO] '(G) by Lemma 2.

2. G = H = Op'(G), Z(G) = Op,(G)Op(G).

Clearly 77 = (Px\x e G) and by the minimality of G, 77 = G . By ( 1) 7 <

CG(Op,(G)). Hence, 77 < CG(Op,(G)). Now 77 = G yields Op,(G) < Z(G).

Similarly, since 7 is Abelian, O'(G) < Z(G).

3. G = F*(G), the generalized Fitting subgroup of G, and G is perfect; i.e,

G' ^G. _
By (2) and the definition of F*(G), F*(G) = F*(G)/Z(G) = Ä, x N2 x

■ • • x Ns, where Z(G) < N¡ and Ni is non-Abelian simple and contains p

as a prime divisor of its order. Let y be an arbitrary element of 7. 7 n

F*(G) = PXP2 ■ Ps, where P¡ is a Sylow /z-subgroup of N¡. Since 7 is

Abelian, [y, P.] = 1 .  For each TV.,  N,   is also normal in F*(G) and 7. is
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contained in N¡nNf , so N* - N¡. By [16], y induces an inner automorphism

of N¡, so there exists a /z-element x¡ of N¡ such that yTi centralizes N¡.

Then yx¡ centralizes N¡. It follows that y(xix2 ■ ■ -xs) e CGF*(G)) < F*(G),

y e F*(G). By (2), F*(G) = G. Now it is easy to see that G is perfect by the

minimum of G.

4. G/Z(G) is non-Abelian simple.

If G/Z(G) is not simple, then G/Z(G) ^MxxM2x---xMt, t>2, Mi

contains Z(G) as a subgroup, and M¡ is non-Abelian simple. By the minimum

of G, the theorem is true for Mi. If there is z, say i = 1, such that M¡ « 2.A7

for p = 7 then, by Blau [11], dimF M > 4. Hence M2 is isomorphic to

either 2.A7 or L2(l"). If M2 is isomorphic to 2.A7, then (MXM2)' is a

homomorphism image of 2.A7 x 2.A7. Every nontrivial F(2.A7 x 2.,47)-module

U is of dimension at least 4 + 4 = 8. It follows that 7 - 3 = 4 > dim^. M >

4 + 4 = 8, which is absurd. If M2 is isomorphic to L2(T), then that will lead

to a similar contradiction on dimensions. Similarly, there exists no i such that

M\ « Jx with p = 11 . Therefore MJZ(G) is isomorphic to L2(pn') for some

positive integer zz;. Since dimF(M\M ) > 2, 2t < p - 2 . This shows that the

theorem is true for G. This contradicts the assumption on G.

5. 7 is not cyclic .

This follows obviously from (4) and [11].

6. Last contradiction.

Set G = G/Z(G). If G is isomorphic to An(n > 5), then by (5) 2/? <

n < p - 1 . There is a subgroup B0 of G such that Z(G) < B0 and BQ is

isomorphic to A x A . Notice that p > 5 , dimf M\B > 2(p - 3). p - 3 >

2(/z - 3). This, too, is absurd.

If G is isomorphic to G(q), a simple group of Lie type, and q is a power

of a prime r, then by Lemma 1 p is not equal to r. If G is isomorphic

to PSL(n, q), then by [12], with p>5,p-3>(q- \)/d for zz = 2

or p - 3 > q"~ -1 forzz>2, where d = (2, q - I). If n = 2, p >

(q - \)/d + 3 = (q + 3d - \)/d . So p > (q - \)/d . Since p is a prime divisor

of \G\, p\(q + \)/d . Hence (q + 3d - \)/d < p < (q + l)/d, which is absurd.

If zz > 2, then p > qn~ + 2. Since p\(q' - 1) for some positive integer

i < n, p\(q" - \)/(q - 1). Suppose (qn - \)/(q - 1) = tp. If t > 2, then

q < t(q - \). q" - 1 = i/z((7 - 1) > q(qn~ + 2), which is absurd. So t = 1 ,

p = (q" - \)/(q - 1) • Then 7 is of order p, contrary to (5). Similarly, G is

not isomorphic to any one of the following groups: PSP(2n , q), PSU(n , q),

PSO+(2n,q)', PSO~(2n,q)', PSO(2n + l , q), G2(q), E6(q), E7(q), Es(q),
F,{q)-_

If G is isomorphic to    F4(2)', then p = 13.   Hence 7 is of order 13,

contrary to (5).   If G  is isomorphic to    F4(q),  q = 22m+[ ,   m >  1 , then

by [12] p - 3 >  (q/2)l/2q\q - 1),  p > q4 + 1 .   The order of 2F4(q)   is

qi2 (q6 + l)(q4 - \)(q3+\)(q-\), so p\(q6+1). Since q6+l = (q2+l)(q4-q2 +1),
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p <q -q + 1 , contradicting p > q + 1. By a similar argument, we can show

that G is not isomorphic to any one of the following groups: 2E6(q), 3D4(q),

Sz(q),2G2(q).

By the classification of finite simple groups, G is isomorphic to a sporadic

simple group. It is easy to check by the Atlas [14] that G is isomorphic to Cox ,

B, or Th with \P\ = 49 or F, with \P\ = 121 . There exists an extra-special
1 +8

2-subgroup of order 2 in each of the four simple groups. It follows that

dimf M > 2 . So ll-3>/z-3>16, which is absurd. The contradiction

proves the theorem.

Corollary 4. Suppose G is a finite group with an Abelian Sylow p-subgroup

P(p > 11). If G has a faithful FG-module of degree at most p - 3 over afield
i i

F of characteristic p, then either P is normal in G or (f (G)/Z(Op (G)) is

isomorphic to ®i<tL2(p"'), n¡ > 1, 2t < p -2.

This result is similar to that of Ferguson [10].

Remark. If 7 is of characteristic zero, that 7 is Abelian directly follows that

dimf M < p - 2. But in the modular case, if we did not assume that 7 is

Abelian, there would be many simple groups added to the list, which would

make Theorem 3 less meaningful.
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