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(Communicated by William J. Davis)

Abstract. We show that the minimal hull of a convex set in a Banach space

is not necessarily convex, even in / spaces (finite- or infinite-dimensional).

This answers a question raised by B. Beauzamy and B. Maurey in their joint

paper of 1977. We also carry out a careful study of the minimal hull and the

saturation of the unit ball in /j . Finally, we give a compactness theorem for

the minimal hull in /. .

Introduction

Let M be a subset of a metric space X. A point x G X is said to be

minimal with respect to M if and only if the condition

d(y, m) < d(x, m)    for all m g M

implies y = x . The set of all points minimal with respect to M is called the

minimal hull of M and is denoted by min(M). The minimal hull is somehow

a generalization of the closed convex hull, since in Hubert spaces they are the

same [1].

The main result of this paper is that in / and /' , N > 4, the minimal

hull of the unit ball fails to be convex provided that 1 < p < 1 + e for some

e > 0 small enough. This is in contrast with the situation in L [0, 1], p > 1 .

J.-O. Larsson proved that in these spaces the minimal hull of the unit ball is a

closed ball of radius p , say, centered at the origin. He also gave estimates for

p   and studied the continuity of the function p -» p   [3].

Remarks. The following facts are easy to check and will be needed later on.

The first two statements hold in general metric spaces, while the last one makes

sense only in Banach spaces.

1.  If Mx Ç M2, then min(M,) C mm(M2).
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140 MIGUEL LACRUZ

2. If M is contained in a closed ball of center a and radius r, then

min(M) is contained in an open ball of center a and radius 2r.

3. If M — {m,, m2} is a two-point set, then min(Af) C conv(Af).

The minimal hull of the unit ball in /

We start by giving conditions for a point in l\    to be minimal with respect

to the unit ball.

1. Lemma. Let x G /,    satisfy the following conditions:

(a) \xt\ + \Xj\ < I for all I < i < j < 4, and

(b) |x.| + |x | + |xfc| < 1 for all  I < i < j < k < 4, with two possible
exceptions.

Then x is minimal with respect to B.w .
i

Proof. Suppose x satisfies (a) and (b), with the possible exceptions 1 < 2 < 3

and 1 < 2 < 4, say. Assume that ||>> - m\\ < \\x - m\\ Vw G B,w . Test with

the following m 's: (0, x2, x3, x4), (x,, 0, x3, x4), and (x,, x2, 0, 0). We

get

Lvi\ + \y2-x2\ + \yi-xi\ + \y4-x4| < |x,I,

\yx -x,A + \y2\ + \ys-Xs\,+ \yA-xA\ < |x2|,

iJ'i -x.\\ + \y1-x1\ + \y^\ + \yii\ < |x3| + |x4|.

Addition of these inequalities gives  ||j>|| + 2||y - x|| < ||x||.   Consequently,

||x|| < \\y\\ + \\y - x\\ < \\y\\ + 2\\y - x|| < ||x||. Therefore, \\y - x\\ = 0 and x
is minimal with respect to BlW .'i

The next lemma exhibits some points which fail to be minimal with respect

to the unit ball of /{4).

2. Lemma. Let u = (1, 1, 1, 1)g /{4). If X> \ then Xu is not minimal with

respect to B.w .'i

Proof. It will be enough to prove that \\^u - m\\ < \\Xu - m\\  V/w G B¡w . Let

m G 5/(4i. We need to show that £/=i 13 ~ m¡\ - S^=i 1^ _ m,\- Fi^t we

restrict our attention to the case mi > 0 for all 1 < / < 4. By symmetry, one

can assume without loss of generality that mx < m2 < w3 < m4. Notice that

m2 < 3 , since mx + m2 + m3 + m4< 1. Thus, we have six different cases.

(i) mx < m2 < 3 < X < m3 < m4. In this case we have J2(=,\ I5 _ m,\ ~

-mx - m2 + m} + mA = J2¡=\ 1^ - m¡\ ■

(ii) m, < m2 < 3 < m3 <X < m4. This gives J2i=l I3 - m¡\ = -mx - m2 +

m3 + m4 < -mx - m2 - m3 + w4 + 2X = ¿J¡=1 \X - m¡\.
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(iii) m, < m2 < 3 < m3 < m4 < X.  In this case we get ^ ,= i 13 m:

-mx - m2 + m3 + m4< -mx - m2 - m3 - m4 + 4X — J2¡=\ 1^ _ m¡\ ■

(iv) mx < m2 < m3 < j- < X < m4 . Here, J2,-. i

mA + i < -m.

, Ij-wi,-! = -mx -m2-m3 +

m2 - m3 + m4 + 2X = 2~Z;=1 |¿ - w;|.

i s ™   s i    TkJo ♦;«-,«.   T^4    11(v) mx < m2 < m3 < \ < m4 < X. This time, X),-=i I \ ~ m¡\ — ~m\ —m2-

m3 + m4 + | < -w, w. m. ™4 + 4X = Eli I* - w,l •
(vi) m, < m2 < m3 < m4 < \ < X. In this case, J2¡=1 13

_  4~  3

m, w. m4 < 4X m, m. m, m.*2 — "*3 — 'rt4  _^  Tt\ — inx   — /r*2 — "M — nil.   —   / ,.'_i  ¡^

Finally, let us remove the assumption that mi > 0 for all 1 < / < 4.

For each 1 < / < 4, let w;+ = max{w(, 0}. Let 7+ = {/: mi > 0} and

/" = {/': mi <0}. Then,

E \ - mi = E u - m) + E I - mi = E (-w/) + E
'=' ;€/" /e/+ /e/~ '='

m.

fe/" /=1 ('€/" ie/+

4

= £ia-™,i.
;=1

,(4)3.    Proposition, /n I = /    , the minimal hull of M = B,w fails to be convex.
i

Proof. Put x = (\, \, \, \) and y = (|, \, \, \).  By Lemma 2 we have

x, y G min(7i/(4i). On the other hand, Lemma 1 shows that the point \(x+y) =

|(1, 1, 1, 1) is not minimal with respect to Btw , since | > \ .

Our next goal is to investigate this lack-of-convexity phenomenon in fp] for

p > 1 . For the proof of the following lemma we refer to [2].

4. Lemma. Let I < p < oo. A point x G /' is minimal with respect to a

finite subset M = {mx, ... , mr} if and only if there are scalars A, , ... , Xr > 0

with X^=1/., = 7 such that the function tp{z) = 2~I;=i^/llz ~~ mi\\P attams its

minimum at z = x.

Notice that the function z ~* tp(z) attains its minimum at a unique point.

We will say that x  is the minimal point with respect to M associated with

X. , ... , X .

5.    Lemma. If 1 < p < oo and K  -

Kp(2-l/p,2

is minimal with respect to B^ .

:(1+2-./(,-nr.

■Up    a-Up   4~l/P)

then the point
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Proof. Let a = (2~1/p, 2~l/p , 4~Up, 4~l/p). We will apply Lemma 4 to find a

minimal point with respect to the set M = {mx, m2, m3} where

mx = (0,2-[/p,4-1/p,4-l/p),

m2 = (2-[/p,0,4-[/p,4-l/p),

m3 = (2-l/p,2-'/p,0,0).

By the remarks we made at the beginning, such a point must be minimal with

respect to B.w .
p

Let x be the minimal point with respect to M associated with Xx = X2 =
TVii^r»     v    10  tV«a  r\r\i r\i   tVi at   m im mi-7£»cv3 _ 3A, = \ . Then x is the point that minimizes

<p(z) = i\\z - mx f + \\\z - m2\\p + \\\z - m3\\p = \\\z\\p + \\\z - af .

Therefore, x is the minimal point with respect to {0, a} associated with 3 ,

I. Again, by the remarks at the beginning, x is forced to lie on the line segment

conv({0, a}).

In other words, there is a scalar t such that x = ta. Also, t has to minimize

<p(ta)=(\\t\p + \\l-t\p)\\a\\p.

A straightforward computation with derivatives shows that t = K . Hence

the point K a is minimal with respect to B,m .
p

If we switch the coordinates around, a similar argument shows that the point

K(4~l/P, 4"1/p, 2"1/p, 2~l/p) is minimal with respect to £.,«,.

6.    Lemma. Let 1 < p < 00, « = (1,1,1,1), wg B¡w , and set

f(t) = \\tu-m\\p.

There is an e > 0 such that ^(3/8) > 0, provided that 1 < p < 1 + e.

Proof. First choose e > 0 so small that 3~[/p < 3/8 for all 1 < p < 1 + e . As

in the proof of Lemma 2, we assume that 0 < mx < m2< m3 < m4. There are

two possible nontrivial cases.

Case I. 0 < mx < m2 < | < m3 < m4 . We have /(/) = (/ - mx)p + {t - m2)p +

(m3 - t)p + (m4 - t)p . So

/(¡)=p [d - my-1+a- m2rx - («3 - ¡r ' - k - a^-n

Thus, it is enough to show that

(i - w,r'+(i - w2r' - (m3 - ir ' + («4 - ¡r ' > o.

The function s -* sp~ being concave, it will suffice to prove the above inequal-

ity for m3 = m4. In other words, we will be all set if we can show that

(I - ™/~' + (I - ™2)"~' - 2("i3 - I)'"' > °.
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provided that mp + mp + 2mp < 1 .   Now observe that m, < 4_1    ,  m2 <

3~     ,  m3 < 2~ /p .   Hence the right-hand side of our inequality is at most

2(2~1/p~ )p~ . In order to get a lower estimate for the left-hand side, we note

that

(I - mp. - mP\ ,-1-2-j         > «3 > I

and so

m2<(l-2(¡)p)i/p,        mx<V2(l-2(\)p)]ylP.

Consequently, the left-hand side is at least

(¡-te(i-2(¡n]1/T"1+'(i-(i-2(i)i')l/T"1.

Hence, it suffices to show that

(I - ii(i - 2(¡)p)][/pr '+(¡ - (i - 2(¡)p)i/pr ' > 2(2-^ - ir '.

In order to do that, we consider the auxiliary function

g(p) = (| - [i(i - 2(¡)p)fpr '+(i-(i- 2(¡)p)i/pri
-2(2-i/p-¡ri.

We have g(l) = 0 and g'(l) = log(2) > 0. Therefore, there is an e, > 0 such

that g{p) > 0 for all 1 < p < 1 + e, , as we wanted.

Case II.  0 < m, < m2 < m3 < | < m4 . Then

/(/) = (t - mx )p + (t - m2)p + (t- m3)p + (m4 - t)p .

We get

/(|) = P[(| - m,r' + (| - rn,)"'1 + (| - m3)p-X - (m4 - ¡)p~]],

so we need to show that

(| - rn,)""' + (| - m2)p-X + (| - m3r' > (m4 - ¿f"'

under the conditions mp + mp + m3 + m4 = I , mx < m2< m2 < \ < m4.

Thus, the left-hand side of our inequality must be at least

(| _ 4-1/y-i + (| _ j-t/y-i s

while the right-hand side is at most (1 - |)/'_ . Now we consider the auxiliary

function

h(p) = (i-4-i/p)p-i+(¡-ri/pri-(i-¡ri.
Here h(l) = 1 and h is continuous at p = 1, so there is an e2 > 0 such

that h(p) > 0 for all 1 < p < e2. Finally we choose e = min{e,, e2}, so

the inequalities in Cases I and II are both fulfilled. The proof of Lemma 6 is

complete.
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7. Theorem. In X = lp   , the minimal hull of M — B,w fails to be convex
p

whenever 1 < p < I + e, for some e > 0 small enough.

Proof. We have already proved this in Proposition 3, for p — 1 . Hence, we

assume that p > 1 . First, we choose e > 0 as small as in Lemma 6, and for

1 < p < 1 + e we set

x = Kp(2~yp , 2~Xlp , 4~l/p , 4~l/p),        y = Kp(4~Xlp , 4~l/p , 2~"p , 2~l/p).

(Recall that Kp = (1 + 2_1/(/7_1))_1 .) By Lemma 5, we know these points are

minimal with respect to B,w . Next, we consider the midpoint
p

^x + y) = l2Kp(2-]/p + 4-l/p)u.

Let Xp = {(Kp(2-[/p + 4~l/p) = \(2~[/p + 4-'/p)(l + 2-l/ip-l))-[ . Notice that

Xx = - and that

a% log(4)     log(2)

dp]P=' 4     +     2     >U'

so we can choose e > 0 so small that X  > | for all 1 < p < 1 + e .

Notice that the function / —► ||/w - m\\ is convex. Thus, Lemma 6 gives that

this function is increasing on [|, oo) for all 1 < p < 1 + e . Therefore

|||w — m|j < \\Xpu-m\\

for all m G B,w . Verdict: the midpoint (x + y)/2 = X u is not minimal with
p ^

respect to B¡{i] .
p

Remarks. A numerical computation gives that auxiliary functions g(p) and

h(p) of Lemma 6 are both positive on the range 1 < p < 1.0385 , and that the

function Xn of Theorem 7 satisfies Xn> I for all 1 < p < 2 .
p p     °

This indicates that Theorem 7 holds for all 1 < p < 1.0385 . However, this

is just a heuristic estimate.

Now we want to extend Theorem 7 to the spaces /   and lpN), N > 4. In

order to do this we carefully localize /    inside them.

8. Lemma. Let n be a positive integer and let 1 <p<oo. Consider the canon-

ical maps I: lp   t-+ /   and P: I  —> I"   given by Ix — x and P(Y?ili x¡e¡) ~
En

,=1 Xiei ■

(a) If M C l(n) and 0 G M then 7(min(M)) C min(7(M)).

(b) If M Clp then P(min(M)) ç min(7>(M)).

Proof. First let M ç lpn) and x G min(M). Assume that for some y G I , we

have Hy-mll < ||x-m|| for all m G M. Then \\Py- m\\ < \\y-m\\ < ||x-m||
for all m G M, and hence Py — x . Now, if we plug m = 0 and x = Py into

the last inequality, we get ||y|| < \\Py\\, and therefore y = Py = x . This takes

care of (a).
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Next, let M ç /   and x G min(A/). Assume that for some y G I"   we have

|| V- - Pm\\ < \\Px - Pm\\ for all me M. Then

\\y - Px + x - m\\p = \\y - Px + x - Pm + Pm - m\\p

= \y-Pm\\p + \\(id-P)(x-m)\\p

< \\Px - Pm\\p + ||(id-P)(x - m)\\" = \\x - m\\p .

Hence y - Px + x = x , and we are all set.

Notice that Lemma 8 is still valid when we replace /   by lp    , with N > n .

Now the main result follows from Theorem 7 and Lemma 8.

9. Theorem. There is an e > 0 such that for all 1 < p < 1 + e the minimal

hull of the unit ball in I   or lpN)  (N > 4) fails to be convex.

Proof. We give the proof only for the case of / , since the same argument works

for the case of fpN). Let 7: lp4) «-» lp and P: lp -» l(p] be as in Lemma 8.

Use Theorem 7 to get x, ye min(B,w) with (x + y)/2 ^ min(7?,i4i) and
p p

look at 7x , I y.  Then Lemma 8(a) gives Ix, Iy e min(5/ ).  However, the
p

midpoint (Ix+Iy)/2 is not in min(7?, ), since in that case the point (x+y)/2 =
p

P((Ix + Iy)/2) would be, by Lemma 10(b), in min(7?,(4)).
p

Some special features of the minimal hull

and the saturation of the unit ball in /j^'

Let I bea general Banach space. We always have the inclusion

min(JS^) C 25° .

In the space L,[0, 1], the minimal hull of the unit ball is as large as it can be;

in other words, the above inclusion is actually an equality. The first result of

this section shows that in /, we can find points which are minimal with respect

to the unit ball and have norm arbitrarily close to 2. This is not so in L [0, 1],

p > 1  (see the comments in the Introduction).

10. Theorem. Let x e l\ satisfy 2~2*=i lx, I ^ 1 for all possible choices

1 < /, < ■ • • < iN+x < 2N + 1 . Then x is minimal with respect to B^in+d .

Proof. Assume that \\y - m\\ < \\x - m\\ for all m e B,w+» ■ We want to show

that y = x. For any 1 </,<••■ < iN+x < 2N + 1, put m = J2k=i x¡ e¡ • ^

assumption, m is in TW+n , so \\y - m\\ < \\x - m\\ ; in other words,'i

k=\ ijiik I'/lj

¡2N+\If we add up these (^7,) inequalities, then we get

27V\.. ( 2N \..  ..     ( 2N
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Hence,

<-(N2N+l)»-

Since (#+,) < (2^), we conclude that y = x .

Remarks. This theorem ensures that the point xN = (e, H-+ e2N+x)/(N + 1)

is minimal with respect to the unit ball of /¡27V+1) (and, thanks to Lemma 8(a),

with respect to the unit ball of /, ). Also, \\xN\\ = (27V + l)/(N + I), and this

quantity converges to 2 as N —> oo .

Notice that it follows from the proof that a point satisfying the conditions

of Theorem 10 is minimal not only with respect to the unit ball of /[ N+l), but

also with respect to a finite subset. It was proven in [2] that, in a uniformly

convex Banach space, the following approximation theorem holds: any point

x minimal with respect to a given subset M can be approximated by a point

x which is arbitrarily close to x and which is minimal with respect to a finite

subset of M. More precisely, if x e min(M), then for all e > 0 there is a finite

subset M' ç M and a point x e min(A/') with ||x - x'|| < e .

As we mentioned in the Introduction, in Hubert spaces the minimal hull is

the closed convex hull, so this approximation result is immediate. We do not

know whether this is true in /, . However, there are Banach spaces in which

such a result does not hold, as the following example shows.

Example. In the space X — c0 , we consider the set M = {±ek : k = 1, 2, ...}.

Then we have 0 G min(M). Indeed, assume \\y - m\\ < \\m\\ for all m e M.

Then we get \yk — 11 < 1 and \yk + 11 < 1 for all k = 1, 2, ... . Hence yk = 0
for all k — 1, 2, ... and 0 is minimal with respect to M. However, given any

x e c0 with ||x'|| < 1/2 , x cannot be minimal with respect to a finite subset of

M. Indeed, if that were the case, we would have x e min({±e,, ... , ±^}) for

some positive integer A'. But then we could move the point x to a different

point y without decreasing its distance to any point in {±ex, ... , ±eN} ; in

order to do that, it suffices to set yk — x'k if k ^ TV + 1, yN+x — 0 if xN+x ̂

0, and yN+l = 1/2 if xN+x = 0. Therefore the space X = c0 fails the

approximation theorem.

Let M be a subset of a metric space X . We set M0 = M and, for k > 0,

we write

Mk+X =min(Mjk).

The saturation of M is then defined by

sat(M) = (J Mw .
k>0
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The pathologies of the minimal hull disappear when one replaces it by the

saturation. For instance, in a strictly convex space, the saturation of a set is

always a closed convex set [1, p. 121]. The saturation of the unit ball in / ,

l<i><oo,p/2,is the set

{xe/p:|x/ + |x/<lV/<;}

[1, p. 136]. In the next theorem, we prove that this result still holds when p = 1 .

Also, we show that, when computing the saturation of the unit ball in /{ , this

infinite process reduces to a finite number of steps.

11.    Theorem.

(a) In /, , the saturation of the unit ball is the set

S = {x G /, : \x¡\ + \x.\ < 1 VI < /' < j < oo}.

(b) In l\  ', the saturation of the unit ball is the set Snl[    , and the infinite

process reduces to N - 2 steps.

Proof. By the argument used in [1], we have the inclusions sat{B¡ ) ç S and

sat(7J/(/v)) Ç5n/j    , so it will suffice to prove the reverse inclusion.

We claim that 5 n /, ç min _ (Tfyw) and we prove this by induction

on N. The case N = 3 isa particular instance of Theorem 10. Now let

us assume that our claim holds for N. We want to prove that it also holds

for N + 1 . Given I < i < N + I we consider the projection P{: l[N+l) -*

/, defined by P;x = (x,, ... , x(_,, x(+1, ... , xN+l). Our objective is to

show that 5n/,|iV+l) ç mmN'l(B/iN+l}). Pick x G S (1 l\N+l) and observe

that PjX e S (~\ l\    .  By our inductive hypothesis, Ptx e min ~ (7?/W), and

so Px G min ~ (B.[N+\)).   Finally, assume that  ||y - m\\ < \\x - m\\  for all
i

m G min ~ (Ban+u) .   Test with the Px's and add up the TV + 1   resulting
i

inequalities to obtain ||y|| + 7V||_y - x|| < ||x||. Hence ||x|| < \\y\\ + \\y - x|| <

||y|| + N\\y - x\\ < ||x||. Therefore y = x, and x is minimal with respect to

min  ~ (7i,(^+l)) ; in other words, x is in min  ~ (B.^+d) .
i i

Now the theorem is a consequence of our claim. We have

sat(£,<Ao) CSnl\N) ç min"~2(7V+n),'i i

and this gives (b). On the other hand,

s&t(B,t)CS= \J(Snl[N)) = (J aaUBjm) ç sat (J B,m = sati^),
N>1 N>\ N>\

and (a) follows.

THE MINIMAL HULL OF COMPACT SETS IN   /,

Recall a classical theorem of Mazur: in a general Banach space, the closed

convex hull of a compact set is compact. A natural question arises: do we have
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an analogous result for the minimal hull? As we mentioned in the Introduction,

Beauzamy and Maurey proved that result for locally uniformly convex, reflexive

Banach spaces. Here we prove the corresponding result for /, . Finally, we give

a counterexample to show that the result does not hold in general metric spaces:

even for a two-point set, the minimal hull might fail to be relatively compact.

In order to prove the following lemma, one has just to mimic the proof of

Lemma 8.

12. Lemma. For any n > 0, consider the projection Pn: /, —♦ /, given by

Pn* = EZn+i x,e, -VMÇlx  then P„(min(M)) C min(Pn(M)).

13. Theorem. If M is a compact subset of /,, then min(M) is relatively com-

pact.

Proof. Recall that a subset K of /, is relatively compact if and only if K is

bounded and

lim sup
n-^oox€K

¿2xtei
i—n

0.

The second condition can be restated as follows: for all e > 0 there is an n0

such that if n > n0 then Pn(K) ç eB¡ .

Now let us see how min(Af) satisfies this set of conditions. The boundedness

of min(Af) follows from the boundedness of M and the remarks at the end

of the Introduction. Therefore, it is enough to check the second condition. Let

e > 0 be given. Since M is compact, there is an n0 such that n > n0 implies

Pn{M) C (e/2)B, . But then, for n > nQ we have

7>„(min(M)) ç min(Pn(M)) ç min (£/?,_) ç eB, .

Hence min(M) satisfies the second condition.

Example. Let X = {mx, m2, xx, ... , xN, ...} be any countable set. We pro-

vide X with a metric d as follows:

(1) d{mi,rt}2) = 2,

(2) d(xL,xt) = l       íi.éj),

(3) ¿(»Vx^l+E-L,
it=i l

(4) ¿(m2,x„) = l-E:i.
í: = l  ¿

It is easily seen that this actually defines a metric on X (we only have to worry

about the triangle inequality). Now look at the compact set M = {mx , m2}. We

claim that min(A/) = X (and therefore min(M) fails to be relatively compact,

since the infinite subset {x,, ... , x^, ...} has the discrete topology). Indeed,

if we take an x(  in X and move it to mx   (resp.  m2 ) then we increase its
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distance to m2 (resp. w, ). Also, if we move xi to x , where j > i (resp.

j < i ), then we increase its distance from mx (resp. m2 ). Therefore, every x(

is minimal with respect to M.
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