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SUFFICIENCY AND THE SEPARATION
OF STRONGLY CONVEX SETS OF PROBABILITY MEASURES

R. V. RAMAMOORTHI

(Communicated by William D. Sudderth)

Abstract. We show that the equivalence of two notions of sufficiency is related

to the separation of two orthogonal, strongly convex sets of probability measures

by a universally measurable set.

Consider a measurable space (äf, sé), and let M(%?) be the set of all prob-

ability measures on (%? , sé). Equip M(JT) with the canonical cr-algebra Jf

generated by the functions m —► m(A), m in M(Sf), and A e se . A subset

M of M(Sf) is said to be strongly convex if, for every probability measure p

on M, the barycenter JM Pp(dP) is in M. Two strongly convex sets M and

TV are orthogonal if for any P e M and Qe N there is a set Ap Q in A such

that P(Ap q) = 1 and Q(Ap Q) - 0. M and TV are said to be uniformly

orthogonal if there is a set A in sé such that P(A) = 1 for all P in M and

Q(A) = 0 for all ß in TV ; in such a case, A is said to separate M and TV. A

natural question in this context is, "if two strongly convex sets M and TV are

orthogonal, then are they uniformly orthogonal?" This question has received

much attention in recent times, for instance see [8] and the references therein.

We show in this article that the above question is equivalent to a problem arising

in the study of "sufficiency" in mathematical statistics.

Throughout this paper, we assume that (%?, sé) is a standard Borel space

and that J'cj/ is a countably generated cr-algebra. If M is an analytic set

of probability measures on (%?, sé), then (%?, sé , M) is called a standard

Borel experiment.

Let P be a probability measure on (3?, sé). For any bounded sé -measur-

able function /, the conditional expectation of / given 38 under P is a

function g such that (i) g is ^-measurable and (ii) ¡B gdP = fB fdP for

all B in S§. We shall denote by Ep(f\&) any version of the conditional

expectation of / given 3§. Doob [4] defined a somewhat weaker notion of

conditional expectation. According to Doob, ~g is a conditional expectation of

/ given ¿% if (i ' ) ~g is measurable with respect to the P-completion of ¿&

and (ii ' ) ¡B gdP = JB fdP for all B in & .
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Let M be a family of probability measures on (3f, sé ) and, as before, let

SB be a sub-cr-algebra of sé . We now define various notions of "sufficiency"

of SB for (3?, sé , M). The following definition, essentially due to Fisher, is

the one prevalent in statistical theory.

Definition 1. SB is said to be sufficient for (3?, sé , M) if, for any bounded

sé -measurable function /, there is a ^"-measurable function g such that for

all P m M, Ep(f\SB) = g\P].

From a different standpoint, Kolmogorov [5] proposed another notion of

sufficiency which we shall call Bayes sufficiency. According to Kolmogorov, SB

is Bayes sufficient if for every "prior distribution" t, on M, the "posterior

distribution" on M given sé is the same as that given SB . Formally let any

Ç, a probability on M, define a measure X* on M x 3f by XAE x A) =

¡EP(A)i(dP).

Definition 2. SB is Bayes sufficient for M if, for all £ and E in IT,
_ _

^('/•x.rl-^) = •Éx(/i-x,rl^')[/lí]>

where s7={MxA:Aesé} and á? = {A/ x B:B eSB}.

Motivated by Doob's definition of conditional expectation, we define yet an-

other concept of sufficiency. This concept, while essentially a technical variation

of Definition 1, serves to elucidate the relationship between Bayes sufficiency

and sufficiency. Towards this end, we define the universal completion SB of

SB as

SB = n{SBP:PeM^(3f)},
p

where M^(3f) is the set of all probability measures on (3f, SB) and SB is

the usual completion of SB with respect to P . We next state a lemma which is

used often in this paper. The proof of the lemma can be found in [11, Lemma

2.2, Corollary].
■

Lemma 1. Any probability measure P on (3?, 3B) admits an extension to a

probability measure P* on (3f ,sé). Equivalently, if T:3f —> [0, 1] is mea-

surable and P is a probability measure on the Borel o-algebra of [0, 1], then

there is a probability measure P* on (3?, sé) such that P = P*T~  .

The following proposition gives alternative descriptions of ¿B. Lemma 1

yields (i), and (ii) can be proved by using the von Neumann selection theorem

and the fact that the class of universally measurable functions is closed under

composition.

Proposition 1. (i) J1 = n{££n®:P e M(3f)}. (ii) // B is a universally

measurable subset of 3f and is a union of 3§ atoms, then B e ¿B .

Definition 3. SB is Doob sufficient for (3f, sé , M) if, for any bounded .im-

measurable function /, there is a ^-measurable function g such that for all

P in M   g = Ep{f\S§)\P].
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It is easy to see that if SB is sufficient, then it is Doob sufficient. We shall

next show that Doob sufficiency implies Bayes sufficiency.

Proposition 2. If M is dominated by a a-finite measure X and SB  is Doob

sufficient for M, then SB is sufficient for M.

Proof. Let / be a bounded sé -measurable function. Then there is a bounded

á'-measurable function g such that

f gdP= f fdP   for all B e SB and PeM.
J B J B

Now get a ^-measurable g such that ~g = g[X]. Since P < X for every P in

M, ~g = g[P], and hence

' fdP[gdP=[.
J B J B

for every B in SB and PeM. This establishes the sufficiency of SB .

Corollary. If SB is Doob sufficient for M, then SB is pairwise sufficient for M;

i.e., SB is sufficient for every pair {P, P1} c M.

The next easy result relates Bayes sufficiency to sufficiency and is proved in

[10].

Proposition 3. SB is Bayes sufficient for M iff, for each probability measure £,

on M, there is a set E, in J£ such that £,(EA) = 1 and SB is sufficient for E*.

The next proposition is an immediate consequence of Proposition 25.3A of

[V].

Proposition 4. SB is Bayes sufficient iff, for every prior £, on M and every

bounded sé -measurable function f:3f —> R, there is a bounded, SB-measurable

function g:3f -> R such that

[ [ f(x)dP(x)dt:(P) = f [ g(x)dP(x)di(P)
JeJb JeJb

for all E-measurablesubset of M and B eSB .

If M is a subset of M(3f), then denote by M the strongly convex set

generated by M. That is, M = {7\:¿; a probability measure on M}, where

Pf is the measure PA A) = fP(A)d£(P).

Theorem 1.  SB is Bayes sufficient for M iff SB is pairwise sufficient for M.

Proof. Suppose that SB is Bayes sufficient for M. If 7\   and P*   are in M,
íl Í2

then with ¿¡ = (¿¡x + £,2)/2 we have by Proposition 3, a set E, c M such that

SB is sufficient for E,. Therefore, given that / is sé -measurable, there is

a ^-measurable function g( such that gi = Ep(f\SB)[P], P e E(. Since

ÇX(E() = 1 and Ç2(E() = 1, it is easy to see that

g( = Ep (f\SB)   and   g, = Ep (f\SB),

so that SB is sufficient for (3?, sé , {P, , PA).
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For the converse, let »#n be an increasing sequence of finite algebras gen-

erating the canonical cr-algebra J( on M. Denote the atoms of dfn by

En, ... , En    . For any probability measure ¡t, on M, define £," by

„         Z(EnE'n)
<?. (E) =-—v-   fox E eJt

ï(E'n)

= Z(E)    ifÇ(E'n) = 0.

Since pairwise sufficiency implies sufficiency for every finite collection, we have

that SB  is sufficient for {Pf„, ... ,Pr   }.   Therefore, for any bounded sé-
*1 í/Kn)

measurable function /, we have a á?-measurable function g   such that
n

EPn(f\SB)   for i=l,...,k(n).

Hence g is a version of the conditional expectation of / given ^#n x SB

under the probability measure Ai. Set

a(x) = { lim« Sn(x)       if lim« Sn(x) exists \

S{  '     \0 otherwise J'

Since jfn x SB \ ^€ x SB, the martingale convergence theorem ensures that

g is a version of the conditional expectation of / given M x SB under the

probability measure X,. So, by Proposition 4, S§ is Bayes sufficient.

Theorem 2. 7/ â? is Doob sufficient, then SB is Bayes sufficient.

Proof. If SB is Doob sufficient for M, then it is easy to see that SB is Doob

sufficient for the strongly convex set M generated by M. By Proposition 1,

SB is pairwise sufficient for M, and by Theorem 1 it follows that SB is Bayes

sufficient for M .    □

We have thus shown that sufficiency implies Doob sufficiency, which in turn

implies Bayes sufficiency. Even under the standard Borel assumptions that we

have made, however, it is known that Bayes sufficiency does not imply suffi-

ciency. An example to this effect was given in [2]. This example uses an earlier

example from [ 1 ] of two strongly convex Borel sets M and TV of probability

measures which are orthogonal but not uniformly so. The next theorem exhibits

the connection between the sufficiency problem and the separation of strongly

convex sets of probability measures.

Theorem 3. In ZFC the following statements are equivalent.

(i) Any two orthogonal, strongly convex, analytic sets of probability measures

on the unit interval can be separated by a universally measurable set.

(ii) In any standard Borel experiment, a countably generated sub-a-algebra

is Doob sufficient iff it is Bayes sufficient.

The following lemma is useful in proving the theorem.
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Lemma 2. Suppose (i) of the theorem is known to be true in a particular case.

Then, if M and TV are strongly convex, analytic sets of probability measures on

(3f, sé) such that, for every P e M and Qe M, there is a B in SB such that

P(B) = 1 and Q(B) = 0, then M and TV can be separated by a set in SB .

Proof of lemma. Since SB is countably generated, there is a function \p 3? —>

[0, 1] such that (3?, SB) and ip{3f) equipped with its Borel cr-algebra are

isomorphic. Further, the sets {Pip~]:P e M} and {ß^~':ß G TV}, thought

of as measures on [0, 1], are analytic and, by Lemma 1, strongly convex. By

(i) there is a universally measurable subset F of [0, 1] which separates the two

sets of probability measures. ip~ (F) separates M and TV and, by Proposition

1, is in SB .   D

Proof of theorem, (i) => (ii). Suppose that the standard Borel experiment con-

sists of the analytic set M of probability measures on the standard Borel space

(3f, sé ) and that SB is a countably generated sub-cr-algebra of sé which is

Bayes sufficient for M .

Let f be a bounded, sé -measurable function. Choose a version g(x, P) of

Ep(f\SB) which is SB x ^-measurable. Assume without loss of generality that

0 < / < 1 and 0 < g(x, P) < 1. For each n and i such that 0 < / < n,

define

^..-{«^ **■■'>*:}•

Let Mn , = {Pe M: P(BPn f) > 0}. For each P in Mn ., define the restriction

~P~n,i ̂PnM)-P-^f- ^Mni = (P:PeMni} and Mni to be the

strongly convex set generated by Mn ¡. Note that Mn . is Borel in M and the

function T(P) = Pn l from Mn ; onto Mn . is measurable. This shows that

Mn . is analytic and, consequently [3, p. 196], Mn . is also analytic.

We next show that Mn i are pairwise orthogonal. In fact we shall show

that if Px G Mn i and P2 e Mn ., i ^ j, then there is a set B in SB such

that PX(B) = 1 and P2(B) = 0. To see this, let t\ be a probability measure

on Mn i and n be a probability measure on Mn such that P* = Px and

P = P2. Let <T and n* be liftings of the measures ¿, and n to Mn . and

Mn , as provided by Lemma 1. Consider the measure p = Ç/2 + rf /2. Then

there exists, by Proposition 3, a measurable set E c M and a á?-measurable

function g such that p(E) = 1 and g(x) - g(x, P)[P] for all P in E.

Since BP ,. e S3 , if P e Mn _(. n E, we have g(x) = g(x, P)[Pn .]. Therefore

B = {x: (i - l)/n < g(x) < i/n} satisfies PnJ(B) =1 for P e Â7n /. n E, and

since ¡C(Mni n £) = 1, we have PX(B) = 1 . Similarly P2(B) = 0.

Using the lemma and an easy argument, we get disjoint sets Un , ,  t/, 2,

... , l/nÄ in S} such that P([/n _.) =1^7° in Mn ¡ and ^(c/^ ,) = 0 for
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P in Mn j. For each n , define gn(x) = Yl"=\ n^v    • ** *s eas^y seen tnat

„ir^ = ¡hmnSn(x)   if it exists 1

M  ;     \0 otherwise]

satisfies g(x) = g(.x, 7J)[P] for all P in M. Since each C7n ( is in <#, #•(*)

is ^-measurable. This establishes the Doob sufficiency of SB .

(ii) => (i). Let M0 and Mx be two orthogonal, strongly convex, analytic

sets of probability measures on [0,1]. Denote by J^ = {0} x [0, 1] and

j^ = {l}x[0,l].

Set 3? = pQ u yx , sé to be the Borel cr-algebra on 3?, and n to be the

function n(i, y) = y for z = 0, 1 . For P in M0, define the probability

measure P on âf by P(/4) = 7>(7r(^ nj0)) and M~0 to be {?:P G MQ}.

Similarly, for ß in Mx , define ß by ß(^) = ß(7r(/4nj^) and 37, = {ß:ß G

A/,}. Note that [0, 1], J^,, yx , are all isomorphic, and so are M0, Â70 and

Mx, M x . We shall next show that SB , the cr-algebra generated by n , is Bayes

sufficient for M — (M0 U M', ).

Towards this end, note ihat ^ is pairwise sufficient for A/. This is so

because, if P e MQ and Q e Mx , then I„-¡,B), where B is a separating set for

P, Q, is a version of dP/(dP+Q). Also, if 7>, ß g A/0 , then (dP/(dP+Q))on

is a version of dP/(dP + Q) . A similar argument works when P, Q e Mx .

In order to establish Bayes sufficiency, since M0 and A/1 are strongly convex,

the strongly convex set generated by M is the set of all measures of the form

aPx + (l- aJQ, where P e MQ , QeMx, and 0 < a < 1 . It is known [6] that

if SB is pairwise sufficient for M, it is also pairwise sufficient for the convex

set (note: not strongly convex) generated by M. By Theorem 1, SB is Bayes

sufficient for M.

(ii) now implies that SB is Doob sufficient for M. Let /* be a SB-

measurable function such that

/* = EP(LU \SB)[p]   for all P e M.

Then it is easily verified that n{x:f*(x) = 1} is universally measurable and

separates MQ and Mx .

Under Martin's Axiom, Mokobodzki [8, Theorem 3.7; 3, Chapter XI] showed

that (i) of Theorem 3 holds. In view of Theorem 3, we can now state

Theorem 4. Assume ZFC + MA . In any standard Borel space Bayes sufficiency

is equivalent to Doob sufficiency.

The only two cases when Bayes sufficiency is known to imply sufficiency are

those in which the family P is dominated by a cr-finite measure and those in

which the measures in P axe all discrete [9]. In both these situations, pairwise

sufficiency itself implies sufficiency, and consequently the additional assump-

tion of Bayes sufficiency plays no essential part. In view of some positive re-

sults known about the problem of separating orthogonal, strongly convex sets
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of probability measures [8], it is likely that there would be cases other than the

dominated and discrete when Bayes sufficiency would imply sufficiency. We,

however, do not know any results in this direction.
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