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TOTALLY REAL SETS IN C2

H. ALEXANDER

(Communicated by Clifford J. Earle, Jr.)

Abstract. We establish the polynomial convexity of certain totally real disks

and of annuli in the unit torus satisfying a topological condition.

1

Jöricke [1] recently proved that a totally real disk contained in the unit sphere

in C is polynomially convex. More precisely, the result of [ 1 ] involves analytic

extension but, by work of Stout [7] and Lupacciolu [2], the polynomial convexity

follows; see also Rosay and Stout [4]. In this note we shall prove the analogous

and easier result when the sphere is replaced by the set M = {(z, w): \z\ = 1} .

Theorem 1. Let K be a smooth totally real compact disk contained in the real

hypersurface M. Then K is polynomially convex.

One could possibly prove this by closely imitating the argument of Jöricke;

however, the approach we follow, although it has some of the elements of the

proof of [1], is probably shorter. Just as in [1] this is not a local result as the unit

torus sits in M as a totally real 2-manifold which is not polynomially convex.

Example. If we allow K to fail to be totally real at a single point then it may

not be polynomially convex. A simple example for such K is the image of the

unit disk by the map z —> (exp(/ • |z| ), z). Then K, which is essentially the

graph of the exponential, has a complex tangent only at the point (1,0) and

is clearly not polynomially convex since it has circles as fibers over a subarc of

the unit circle of the z-plane. An analogous example in the context of [1] is

obtained from the map z —► (z, y 1 - |z| ). It should be noted that Wermer

(see [3, p. 34]) has given an example of a totally real disk in C which is not

polynomially convex.

For a set S in C and z e C we denote the fiber {w e C: (z, w) e S}

by Sz. To prove the theorem we first claim that Kz is polynomially convex
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in C for all z. Suppose not. Then there is an a in the unit circle such that

Ka is not polynomially convex and hence, by Runge's theorem, C\Ka is not

connected. By Alexander duality [5, pp. 296, 334] Hl{Ka, Z) is nontrivial.

Now K is topologically a disk which we can assume sits in a copy E of 7?".

Identifying Ka with {a} ® Ka ç K and applying Alexander duality again for

Ka Q E, we conclude that E\Ka is not connected.

Since K is totally real and M has real dimension 3 there is a well-defined

real tangent line bundle on K given by the intersection of the complex tangent

space of M with the tangent space of K. Since K is contractible, there is a

unit tangent vector field v which is a section of this bundle. That is, v is a

unit vector field on K which lies pointwise in the complex tangent space to M

at each point of K ; cf. [1]. Consider the integral curves of « in K. Since

v is at each point a derivative in a w direction, the vector field v applied to

the function z vanishes identically. Therefore, z is constant on each integral

curve. If p is a point of K not in Kq then, by the Poincaré-Bendixson theory,

the integral curve through p joins p to the boundary of K. Since z at p

is different from a, this integral curve is disjoint from Ka . This implies that

E\Ka is connected. This is a contradiction.

Thus each Kv is polynomially convex. Since H (K, C) = 0, it follows

directly from a result of Stolzenberg [6, Corollary 2.20] that K is polynomially

convex.

2

The aforementioned result of Stolzenberg requires that the set K satisfy

H (K, C) = 0. However the idea of his proof holds in more general cases, for

example, in the following setting. Let T2 be the unit torus in C  . We identify
7 7 2

the fundamental group of T with Z as follows: [r,s]eZ is identified with

(the homotopy class of) the curve {(exp(/r/), exp(ist)): 0 < t < 2n}. Let A

be a compact annulus contained in T and g a simple closed curve contained

in A that generates the fundamental group of A . Let [p, q] be homotopic in

T   to g ; ±[p, q] is independent of the choice of g .

Theorem 2. If pq < 0 or p — 0 = q, then A is polynomially convex.

Remark. If pq > 0 or exactly one of p and q is zero, then A need not be

polynomially convex. Indeed the following is easily verified.

Lemma. If g is a simple closed curve in T which is not null-homotopic, then

g is homotopic in T to a curve [p, q] with p and q relatively prime. In

particular, if q - 0 then p = 1 or p = -1.

By the lemma, we can assume that p and q are relatively prime. This

implies that {(z, w) e T2: zq = wp} is a (connected!) simple closed curve

in T which is not polynomially convex. Then a tubular neighborhood of this

curve in T   provides an example of a nonpolynomially convex annulus A with
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Proof of Theorem 2. If pq < 0, then by symmetry we can assume that p < 0

and g > 0. Let a = -p and set f(z, w) — zqwa . Then / is identically 1 on

the curve [p, q]. Since / has modulus 1 on T and since g is homotopic to

the curve [p, q] in T , it follows that / restricted to A lifts to a map F of

A into C such that exp oF = f ; i.e. F is a logarithm of / on ,4. Then T7

extends to be a logarithm of / on a neighborhood N of A in C .
* 2

We claim that (-4), = Az for all z in the unit circle. Since (T )z is a peak

set of T , it is enough to show that Az is a proper subset of the unit circle.

Suppose not. Then A contains a circle k of the form (T ) for some z. But

then, as the fundamental group of A is singlely generated, it follows that k is

homotopic in A to some multiple of g . Hence k is also homotopic in T to

a multiple of [p, q] ; this is clearly false—a contradiction.

To prove that A is polynomially convex we argue by contradiction and sup-

pose otherwise. For r < 1 we set Q — Â n {(z, w): r < \z\ < 1}. If r is

sufficiently close to 1, by the last paragraph, Q is contained in N. By the

local maximum modulus principle (cf. [6]) the Shilov boundary of the alge-

bra of functions on Q which are locally in P(Q) is contained in the union of

Q n T2 - A and QC\ {(z, w): \z\ = r}. On the first set / has modulus 1 and

on the second set / has modulus < rq . Since F - log(/) is locally in P{Q),

the boundary of F(Q) is contained in the union of two sets: the vertical line

{Re(z) = 0} and the set {Re(z) < q -log(r)}. This implies that E(Q) does

not meet {z: q • logr < Re(z) < 0}. Hence A is relatively open in Â. This

implies that A is polynomially convex.

If p = 0 — q then g is null-homotopic in T ; hence g bounds a disk in

T2. Thus A is contained in a compact disk K in T2 and the polynomial

convexity of A follows, say by Theorem 1.
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